

Department of Information Technology
Statistics with Python

Module 1: Introduction to Python - Installing Python, The concept of data types; variables,

assignments; arithmetic operators and expressions; Input and Output in Python

Data Types in Python

According to the properties they possess, there are mainly six python data types. Although

there is one more data type range which is often used while working with loops in python.

a) Python Numeric Data type

In Python, numeric data type is used to hold numeric values.

Integers, floating-point numbers and complex numbers fall under Python numbers category.

They are defined as int, float and complex classes in Python.

int - holds signed integers of non-limited length.

float - holds floating decimal points and it's accurate up to 15 decimal places.

complex - holds complex numbers.

We can use the type() function to know which class a variable or a value belongs to.

Let's see an example,

num1 = 5

print(num1, 'is of type', type(num1))

num2 = 2.0

print(num2, 'is of type', type(num2))

num3 = 1+2j

print(num3, 'is of type', type(num3))

Run Code

Output

5 is of type <class 'int'>

2.0 is of type <class 'float'>

https://www.edureka.co/blog/loops-in-python/
https://www.programiz.com/python-programming/numbers
https://www.programiz.com/python-programming/online-compiler

(1+2j) is of type <class 'complex'>

In the above example, we have created three variables named num1, num2 and num3 with

values 5, 5.0, and 1+2j respectively.

We have also used the type() function to know which class a certain variable belongs to.

Since,

5 is an integer value, type() returns int as the class of num1 i.e <class 'int'>

2.0 is a floating value, type() returns float as the class of num2 i.e <class 'float'>

1 + 2j is a complex number, type() returns complex as the class of num3 i.e <class 'complex'>

b) Python List Data Type

List is an ordered collection of similar or different types of items separated by commas and

enclosed within brackets []. For example,

languages = ["Swift", "Java", "Python"]

Here, we have created a list named languages with 3 string values inside it.

To access items from a list, we use the index number (0, 1, 2 ...). For example,

languages = ["Swift", "Java", "Python"]

access element at index 0

print(languages[0]) # Swift

access element at index 2

print(languages[2]) # Python

In the above example, we have used the index values to access items from the languages list.

languages[0] - access first item from languages i.e. Swift

languages[2] - access third item from languages i.e. Python

c) Python Tuple Data Type

Tuple is an ordered sequences of items same as a list. The only difference is that tuples are

immutable. Tuples once created cannot be modified.

In Python, we use the parentheses () to store items of a tuple. For example,

product = ('Xbox', 499.99)

Here, product is a tuple with a string value Xbox and integer value 499.99.

Similar to lists, we use the index number to access tuple items in Python . For example,

create a tuple

product = ('Microsoft', 'Xbox', 499.99)

access element at index 0

print(product[0]) # Microsoft

access element at index 1

print(product[1]) # Xbox

d) Python String Data Type

String is a sequence of characters represented by either single or double quotes. For example,

name = 'Python'

print(name)

message = 'Python for beginners'

print(message)

Output

Python

Python for beginners

In the above example, we have created string-type variables: name and message with

values 'Python' and 'Python for beginners' respectively.

e) Python Set Data Type
Set is an unordered collection of unique items. Set is defined by values separated by commas inside

braces { }. For example,

create a set named student_id

student_id = {112, 114, 116, 118, 115}

display student_id elements

print(student_id)

display type of student_id

print(type(student_id))

Output

{112, 114, 115, 116, 118}

<class 'set'>

Here, we have created a set named student_info with 5 integer values.

Since sets are unordered collections, indexing has no meaning. Hence, the slicing

operator [] does not work.

f) Python Dictionary Data Type

Python dictionary is an ordered collection of items. It stores elements in key/value pairs.

Here, keys are unique identifiers that are associated with each value.

Let's see an example,

create a dictionary named capital_city

capital_city = {'Nepal': 'Kathmandu', 'Italy': 'Rome', 'England': 'London'}

print(capital_city)

Output
{'Nepal': 'Kathmandu', 'Italy': 'Rome', 'England': 'London'}

In the above example, we have created a dictionary named capital_city. Here,

Keys are 'Nepal', 'Italy', 'England'

Values are 'Kathmandu', 'Rome', 'London'

Access Dictionary Values Using Keys -We use keys to retrieve the respective value. But not

the other way around. For example,

create a dictionary named capital_city

capital_city = {'Nepal': 'Kathmandu', 'Italy': 'Rome', 'England': 'London'}

print(capital_city['Nepal']) # prints Kathmandu

print(capital_city['Kathmandu']) # throws error message

Here, we have accessed values using keys from the capital_city dictionary.

Since 'Nepal' is key, capital_city['Nepal'] accesses its respective value i.e. Kathmandu

However, 'Kathmandu' is the value for the 'Nepal' key, so capital_city['Kathmandu'] throws an

error message.

Creating Python Variables

Python variables do not need explicit declaration to reserve memory space or you can say to

create a variable. A Python variable is created automatically when you assign a value to it. The

equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right

of the = operator is the value stored in the variable. For example −

counter = 100 # Creates an integer variable

miles = 1000.0 # Creates a floating point variable

name = "Zara Ali" # Creates a string variable

Once we create a Python variable and assign a value to it, we can print it using print() function.

Following is the extension of previous example and shows how to print different variables in

Python:

print (counter)

print (miles)

print (name)

Here, 100, 1000.0 and "Zara Ali" are the values assigned to counter, miles, and name variables,

respectively. When running the above Python program, this produces the following result −

100

1000.0

Zara Ali

Delete a Variable

You can delete the reference to a number object by using the del statement. The syntax of the

del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement. For example −

Example

Following examples shows how we can delete a variable and if we try to use a deleted variable

then Python interpreter will throw an error:

counter = 100

print (counter)

del counter

print (counter)

This will produce the following result:

100

Traceback (most recent call last):

 File "main.py", line 7, in <module>

 print (counter)

NameError: name 'counter' is not defined

Assignment

Python allows you to assign a single value to several variables simultaneously which means

you can create multiple variables at a time. For example −

a = b = c = 100

print (a)

print (b)

print (c)

This produces the following result:

100

100

100

Here, an integer object is created with the value 1, and all three variables are assigned to the

same memory location. You can also assign multiple objects to multiple variables. For

example

a,b,c = 1,2,"Zara Ali"

print (a)

print (b)

print (c)

This produces the following result:

1

2

Zara Ali

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively, and

one string object with the value "Zara Ali" is assigned to the variable c

Arithmetic operators and expressions in Python
Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

print(10 + 5)

Python divides the operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Identity operators

 Membership operators

 Bitwise operators

Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical

operations:

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

** Exponentiation x ** y

// Floor division x // y

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both
statements are true

x < 5 and x <
10

Or Returns True if one of the
statements is true

x < 5 or x < 4

Not Reverse the result, returns
False if the result is true

not(x < 5 and x
< 10)

Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are actually

the same object, with the same memory location:

Operator Description Example

is Returns True if both variables are the

same object

x is y

is not Returns True if both variables are not

the same object

x is not y

Membership Operators

Membership operators are used to test if a sequence is presented in an object:

Operator Description Example

in Returns True if a sequence with the specified value

is present in the object

x in y

not in Returns True if a sequence with the specified value

is not present in the object

Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left

shift

Shift left by pushing zeros in from the right and let the leftmost

bits fall off

>> Signed right

shift

Shift right by pushing copies of the leftmost bit in from the left,

and let the rightmost bits fall off

Input and Output in Python

Sometimes a developer might want to take user input at some point in the program. To do this

Python provides an input() function.

Syntax:

input('prompt')

Example: Python get user input with a message

Taking input from the user

name = input("Enter your name: ")

Output

print("Hello, " + name)

Output:

Enter your name: GFG

Hello, GFG

Example 1: Python Print Statement

print('Good Morning!')

print('It is rainy today')

Run Code

Output

Good Morning!

It is rainy today

Example 2: Python print() with sep parameter

print('New Year', 2023, 'See you soon!', sep= '* ')

Output

New Year* 2023* See you soon!

https://www.programiz.com/python-programming/online-compiler

Sources:

https://www.w3schools.com/python/python_operators.asp

https://www.programiz.com/python-programming/variables-datatypes

https://www.programiz.com/python-programming/input-output-import

https://www.w3schools.com/python/python_operators.asp
https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/input-output-import

	Department of Information Technology
	Statistics with Python
	Data Types in Python

	Assignment
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Identity Operators
	Identity operators are used to compare the objects, not if they are equal, but if they are actually the same object, with the same memory location:
	Membership Operators
	Bitwise Operators

