WAVOO WAJEEHA WOMEN'S COLLEGE

Run by : Wavoo SAR Educational Trust
(minority institution)

2333333 P L LLLeee

Department of Information Technology
Statistics with Python

Module 1: Introduction to Python - Installing Python, The concept of data types; variables,
assignments; arithmetic operators and expressions; Input and Output in Python

Data Types in Python

According to the properties they possess, there are mainly six python data types. Although
there is one more data type range which is often used while working with loops in python.

a) Python Numeric Data type

In Python, numeric data type is used to hold numeric values.
Integers, floating-point numbers and complex numbers fall under Python numbers category.
They are defined as int, float and complex classes in Python.

int - holds signed integers of non-limited length.

float - holds floating decimal points and it's accurate up to 15 decimal places.
complex - holds complex numbers.

We can use the type() function to know which class a variable or a value belongs to.

Let's see an example,
numl =5
(numd, 'is of type', type(num1l))

num2 = 2.0
(numz2, 'is of type', type(numz2))

num3 = 1+2]
(numg, 'is of type', type(num3))
Run Code

Output

5 is of type <class 'int">

2.0 is of type <class 'float™>

https://www.edureka.co/blog/loops-in-python/
https://www.programiz.com/python-programming/numbers
https://www.programiz.com/python-programming/online-compiler

(1+2j) is of type <class '‘complex'>

In the above example, we have created three variables named numl, num2 and num3 with
values 5, 5.0, and 1+2j respectively.

We have also used the type() function to know which class a certain variable belongs to.
Since,

5 is an integer value, type() returns int as the class of numl i.e <class 'int">

2.0 is a floating value, type() returns float as the class of num2 i.e <class ‘float’>

1 + 2j is a complex number, type() returns complex as the class of num3 i.e <class ‘complex'>

b) Python List Data Type
List is an ordered collection of similar or different types of items separated by commas and
enclosed within brackets []. For example,

languages = ["Swift", "Java", "Python"]

Here, we have created a list named languages with 3 string values inside it.
To access items from a list, we use the index number (0, 1, 2 ...). For example,
languages = ["Swift", "Java", "Python"]

access element at index O
print(languages[0]) # Swift

access element at index 2
print(languages[2]) # Python

In the above example, we have used the index values to access items from the languages list.
languages[0] - access first item from languages i.e. Swift
languages[2] - access third item from languages i.e. Python

c) Python Tuple Data Type
Tuple is an ordered sequences of items same as a list. The only difference is that tuples are
immutable. Tuples once created cannot be modified.

In Python, we use the parentheses () to store items of a tuple. For example,
product = ("Xbox', 499.99)
Here, product is a tuple with a string value Xbox and integer value 499.99.

Similar to lists, we use the index number to access tuple items in Python . For example,
create a tuple
product = ('Microsoft’, "Xbox', 499.99)

access element at index 0
print(product[0]) # Microsoft

access element at index 1
(product[1]) # Xbox

d) Python String Data Type
String is a sequence of characters represented by either single or double quotes. For example,

message = 'Python for beginners'
(message)

Output

Python

Python for beginners

In the above example, we have created string-type variables: name and message with
values 'Python’ and 'Python for beginners' respectively.

e) Python Set Data Type
Set is an unordered collection of unique items. Set is defined by values separated by commas inside

braces { }. For example,

create a set named student_id
student_id = {112, 114, 116, 118, 115}

display student_id elements
(student_id)

display type of student_id
(type(student_id))

Output

{112, 114, 115, 116, 118}

<class 'set™>

Here, we have created a set named student_info with 5 integer values.
Since sets are unordered collections, indexing has no meaning. Hence, the slicing
operator [] does not work.

f) Python Dictionary Data Type
Python dictionary is an ordered collection of items. It stores elements in key/value pairs.
Here, keys are unique identifiers that are associated with each value.

Let's see an example,
create a dictionary named capital_city|

capital_city = {'Nepal': 'Kathmandu', 'ltaly": 'Rome’, 'England’: 'London"}
(capital_city)

Output

{'Nepal': 'Kathmandu', 'ltaly': 'Rome’, 'England': ‘London'}

In the above example, we have created a dictionary named capital_city. Here,
Keys are 'Nepal', 'ltaly’, 'England’
Values are 'Kathmandu’, 'Rome’, 'London’

Access Dictionary Values Using Keys -We use keys to retrieve the respective value. But not
the other way around. For example,

create a dictionary named capital_cit
capital_city = {'Nepal': 'Kathmandu’, 'Italy: 'Rome’, 'England': 'London'}
print(capital_city['Nepal]) # prints Kathmandu
print(capital_city['Kathmandu'l) # throws error message

Here, we have accessed values using keys from the capital_city dictionary.
Since 'Nepal' is key, capital_city['Nepal’] accesses its respective value i.e. Kathmandu

However, 'Kathmandu' is the value for the 'Nepal' key, so capital_city['Kathmandu'] throws an
error message.

Creating Python Variables

Python variables do not need explicit declaration to reserve memory space or you can say to
create a variable. A Python variable is created automatically when you assign a value to it. The
equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to the right
of the = operator is the value stored in the variable. For example —

counter = 100 # Creates an integer variable
miles =1000.0 # Creates a floating point variable
name ="Zara Ali" # Creates a string variable

Once we create a Python variable and assign a value to it, we can print it using print() function.
Following is the extension of previous example and shows how to print different variables in
Python:

print (counter)

print (miles)

print (name)

Here, 100, 1000.0 and "Zara Ali" are the values assigned to counter, miles, and name variables,
respectively. When running the above Python program, this produces the following result —

100
1000.0
Zara Ali

Delete a Variable
You can delete the reference to a number object by using the del statement. The syntax of the
del statement is —

del varl| var2| var3[....varN
You can delete a single object or multiple objects by using the del statement. For example —

Example
Following examples shows how we can delete a variable and if we try to use a deleted variable
then Python interpreter will throw an error:

counter = 100
print (counter
del counter

print (counter

This will produce the following result:
100
Traceback (most recent call last):
File "main.py", line 7, in <module>
print (counter)
NameError: name ‘counter' is not defined

Assignment

Python allows you to assign a single value to several variables simultaneously which means
you can create multiple variables at a time. For example —

a=b=c=100

print (a

print (b

print (c

This produces the following result:
100

100

100

Here, an integer object is created with the value 1, and all three variables are assigned to the
same memory location. You can also assign multiple objects to multiple variables. For
example

ab,c=12"Zara Ali"

print (a

print (b

print (c

This produces the following result:

1

2

Zara Ali

Here, two integer objects with values 1 and 2 are assigned to variables a and b respectively, and
one string object with the value "Zara Ali" is assigned to the variable ¢

Arithmetic operators and expressions in Python
Operators are used to perform operations on variables and values.
In the example below, we use the + operator to add together two values:

Example
print(10 + 5)

Python divides the operators in the following groups:

Arithmetic operators
Assignment operators
Comparison operators
Logical operators
Identity operators
Membership operators
Bitwise operators

Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical
operations:

Operator Name Example
+ Addition X+y
- Subtraction X-y
* Multiplication X*y
/ Division xly

% Modulus X%y

** Exponentiation X **y

1l Floor division X1y

Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As
= X =5 Xx=5

+= X +=3 X=X+3
= X -=3 X=X-3
* — X *¥= 3 X =X%*3
/= X /=3 X=x/3
%= X %= 3 X=X%3
//= X//=3 X=Xx//3

* % — X ¥*= 3 X = X ** 3

= X |=3 Xx=x]|3
A= X N=3 X=x"3
>>= X >>=3 X=X>>3
<<= X <<= 3 X =X<<3

Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example
== Equal X ==

I= Not equal xl=y

> Greater than X>y

< Less than X<y

>= Greater than or equal to X>=y

<= Less than or equal to X<=Yy

Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both X< 5and x <
statements are true 10

Or Returns True if one of the X<5o0rx<4

statements is true

Not Reverse the result, returns not(x < 5 and x
False if the result is true < 10)

Identity Operators

Identity operators are used to compare the objects, not if they are equal, but if they are actually
the same object, with the same memory location:

Operator Description Example

is Returns True if both variables are the X isy
same object

is not Returns True if both variables are not ~ xisnoty
the same object

Membership Operators

Membership operators are used to test if a sequence is presented in an object:

Operator Description

Example

in Returns True if a sequence with the specified value xiny
IS present in the object

not in Returns True if a sequence with the specified value
IS not present in the object

Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name

& AND
OR
A XOR
~ NOT
<< Zero fill left

shift

Description

Sets each bit to 1 if both bits are 1

Sets each bit to 1 if one of two bits is 1

Sets each bit to 1 if only one of two bits is 1

Inverts all the bits

Shift left by pushing zeros in from the right and let the leftmost
bits fall off

>> Signed right Shift right by pushing copies of the leftmost bit in from the left,
shift and let the rightmost bits fall off

Input and Output in Python

Sometimes a developer might want to take user input at some point in the program. To do this
Python provides an input() function.

Syntax:
input(‘prompt’)

Example: Python get user input with a message

Taking input from the user

name = input("Enter your name: ")
Output

print("Hello, " + name)

Output:
Enter your name: GFG
Hello, GFG

Example 1: Python Print Statement
(‘Good Morning!")

(It is rainy today")
Run Code
Output

Good Morning!

It is rainy today

Example 2: Python print() with sep parameter

('New Year', 2023, 'See you soon!', sep= '* ')

Output

New Year* 2023* See you soon!

https://www.programiz.com/python-programming/online-compiler

Sources:
https://www.w3schools.com/python/python operators.asp

https://www.programiz.com/python-programming/variables-datatypes

https://www.programiz.com/python-programming/input-output-import

https://www.w3schools.com/python/python_operators.asp
https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/input-output-import

	Department of Information Technology
	Statistics with Python
	Data Types in Python

	Assignment
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Identity Operators
	Identity operators are used to compare the objects, not if they are equal, but if they are actually the same object, with the same memory location:
	Membership Operators
	Bitwise Operators

