

Department of Information Technology

Statistics with Python

Module 2: Lists and Tuples-Arrays, Creating and Accessing Lists, Manipulating Lists,

Creating and Accessing Tuples, Data Frames.

Arrays
An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in single variables

could look like this:

car1 = "Ford"

car2 = "Volvo"

car3 = "BMW"

However, what if you want to loop through the cars and find a specific one? And what if you

had not 3 cars, but 300?

The solution is an array!

Array is created as follows:

cars = ["Ford", "Volvo", "BMW"]

Access the Elements of an Array -An array can hold many values under a single name, and

you can access the values by referring to an index number.

x = cars[0]

print(x)

Output: Ford

Modify the value of the first array item:

cars[0] = "Toyota"

The Length of an Array-Use the len() method to return the length of an array (the number of

elements in an array).

Example

Return the number of elements in the cars array:

x = len(cars)

Adding Array Elements-You can use the append() method to add an element to an array.

Example

Add one more element to the cars array:

cars.append("Honda")

Removing Array Elements-You can use the pop() method to remove an element from the

array.

Example

Delete the second element of the cars array:

cars.pop(1)

You can also use the remove() method to remove an element from the array.

Example

Delete the element that has the value "Volvo":

cars.remove("Volvo")

Creating and Accessing Lists
A list is a collection of similar or different types of data. For example,

Suppose we need to record the age of 5 students. Instead of creating 5 separate variables, we

can simply create a list:

Create a Python List-A list is created in Python by placing items inside [], separated by

commas . For example,

A list with 3 integers

numbers = [1, 2, 5]

print(numbers)

Output: [1, 2, 5]

Here, we have created a list named numbers with 3 integer items.

A list can have any number of items and they may be of different types (integer, float, string,

etc.). For example,

empty list

my_list = []

list with mixed data types

my_list = [1, "Hello", 3.4]

Access Python List Elements -In Python, each item in a list is associated with a number. The

number is known as a list index.

We can access elements of an array using the index number (0, 1, 2 …). For example,

languages = ["Python", "Swift", "C++"]

access item at index 0

print(languages[0]) # Python

access item at index 2

print(languages[2]) # C++

In the above example, we have created a list

Note: The list index always starts with 0. Hence, the first element of a list is present at index 0,

not 1.

Negative Indexing in Python-Python allows negative indexing for its sequences. The index

of -1 refers to the last item, -2 to the second last item and so on.

Let's see an example,

languages = ["Python", "Swift", "C++"]

access item at index 0

print(languages[-1]) # C++

access item at index 2

print(languages[-3]) # Python

Slicing of a Python List-In Python it is possible to access a section of items from the list using

the slicing operator :, not just a single item.

For example,

List slicing in Python

my_list = ['p','r','o','g','r','a','m','i','z']

items from index 2 to index 4

print(my_list[2:5])

items from index 5 to end

print(my_list[5:])

items beginning to end

print(my_list[:])

Output

['o', 'g', 'r']

['a', 'm', 'i', 'z']

['p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z']

Here,

my_list[2:5] returns a list with items from index 2 to index 4.

my_list[5:] returns a list with items from index 1 to the end.

my_list[:] returns all list items

Note: When we slice lists, the start index is inclusive but the end index is exclusive.

--

Manipulation of Lists

Add Elements to a Python List

Python List provides different methods to add items to a list.

1. Using append()

The append() method adds an item at the end of the list. For example,

numbers = [21, 34, 54, 12]

print("Before Append:", numbers)

using append method

numbers.append(32)

print("After Append:", numbers)

Output

Before Append: [21, 34, 54, 12]

After Append: [21, 34, 54, 12, 32]

In the above example, we have created a list named numbers. Notice the line,

numbers.append(32)

Here, append() adds 32 at the end of the array.

https://www.programiz.com/python-programming/methods/list/append

2. Using extend()
We use the extend() method to add all items of one list to another. For example,

prime_numbers = [2, 3, 5]

print("List1:", prime_numbers)

even_numbers = [4, 6, 8]

print("List2:", even_numbers)

join two lists

prime_numbers.extend(even_numbers)

print("List after append:", prime_numbers)

Output

List1: [2, 3, 5]

List2: [4, 6, 8]

List after append: [2, 3, 5, 4, 6, 8]

In the above example, we have two lists named prime_numbers and even_numbers.

Change List Items

Python lists are mutable. Meaning lists are changeable. And, we can change items of a list by

assigning new values using = operator. For example,

languages = ['Python', 'Swift', 'C++']

changing the third item to 'C'

languages[2] = 'C'

print(languages) # ['Python', 'Swift', 'C']

Run Code

Here, initially the value at index 3 is 'C++'. We then changed the value to 'C' using

languages[2] = 'C'

Remove an Item From a List

1. Using del()

In Python we can use the del statement to remove one or more items from a list. For example,

languages = ['Python', 'Swift', 'C++', 'C', 'Java', 'Rust', 'R']

deleting the second item

del languages[1]

print(languages) # ['Python', 'C++', 'C', 'Java', 'Rust', 'R']

deleting the last item

del languages[-1]

print(languages) # ['Python', 'C++', 'C', 'Java', 'Rust']

delete first two items

del languages[0 : 2] # ['C', 'Java', 'Rust']

print(languages)

https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/del

Run Code

2. Using remove()

We can also use the remove() method to delete a list item. For example,

languages = ['Python', 'Swift', 'C++', 'C', 'Java', 'Rust', 'R']

remove 'Python' from the list

languages.remove('Python')

print(languages) # ['Swift', 'C++', 'C', 'Java', 'Rust', 'R']

Run Code

Here, languages.remove('Python') removes 'Python' from the languages list.

Python List Methods

Python has many useful list methods that makes it really easy to work with lists.

Method Description

append() add an item to the end of the list

extend() add items of lists and other iterables to the end of the list

insert() inserts an item at the specified index

remove() removes item present at the given index

pop() returns and removes item present at the given index

clear() removes all items from the list

index() returns the index of the first matched item

count() returns the count of the specified item in the list

sort() sort the list in ascending/descending order

reverse() reverses the item of the list

copy() returns the shallow copy of the list

Creating and Accessing Tuples

A tuple in Python is similar to a list. The difference between the two is that we cannot change

the elements of a tuple once it is assigned whereas we can change the elements of a list.

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/methods/list
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/list

Creating a Tuple

A tuple is created by placing all the items (elements) inside parentheses (), separated by

commas. The parentheses are optional, however, it is a good practice to use them.

A tuple can have any number of items and they may be of different types (integer, float,

list, string, etc.).

Different types of tuples

Empty tuple

my_tuple = ()

print(my_tuple)

Tuple having integers

my_tuple = (1, 2, 3)

print(my_tuple)

tuple with mixed datatypes

my_tuple = (1, "Hello", 3.4)

print(my_tuple)

nested tuple

my_tuple = ("mouse", [8, 4, 6], (1, 2, 3))

print(my_tuple)

Output
()

(1, 2, 3)

(1, 'Hello', 3.4)

('mouse', [8, 4, 6], (1, 2, 3))

In the above example, we have created different types of tuples and stored different data items

inside them.

we can also create tuples without using parentheses:

my_tuple = 1, 2, 3

my_tuple = 1, "Hello", 3.4

Create a Python Tuple With one Element

In Python, creating a tuple with one element is a bit tricky. Having one element within

parentheses is not enough.

We will need a trailing comma to indicate that it is a tuple,

var1 = ("Hello") # string

var2 = ("Hello",) # tuple

Access Python Tuple Elements

Each element of a tuple is represented by index numbers (0, 1, ...) where the first element is at

index 0.We use the index number to access tuple elements. For example,

https://www.programiz.com/python-programming/string

1. Indexing

We can use the index operator [] to access an item in a tuple, where the index starts from 0.

So, a tuple having 6 elements will have indices from 0 to 5.

accessing tuple elements using indexing

letters = ("p", "r", "o", "g", "r", "a", "m", "i", "z")

print(letters[0]) # prints "p"

print(letters[5]) # prints "a"

In the above example,

letters[0] - accesses the first element

letters[5] - accesses the sixth element

2. Negative Indexing

Python allows negative indexing for its sequences.

The index of -1 refers to the last item, -2 to the second last item and so on. For example,

accessing tuple elements using negative indexing

letters = ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

print(letters[-1]) # prints 'z'

print(letters[-3]) # prints 'm'

Run Code

In the above example,

letters[-1] - accesses last element

letters[-3] - accesses third last element

3. Slicing

We can access a range of items in a tuple by using the slicing operator colon :.

accessing tuple elements using slicing

my_tuple = ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

elements 2nd to 4th index

print(my_tuple[1:4]) # prints ('r', 'o', 'g')

elements beginning to 2nd

print(my_tuple[:-7]) # prints ('p', 'r')

elements 8th to end

print(my_tuple[7:]) # prints ('i', 'z')

elements beginning to end

print(my_tuple[:]) # Prints ('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

Run Code

Output

('r', 'o', 'g')

('p', 'r')

('i', 'z')

('p', 'r', 'o', 'g', 'r', 'a', 'm', 'i', 'z')

https://www.programiz.com/python-programming/online-compiler
https://www.programiz.com/python-programming/online-compiler

Here,

my_tuple[1:4] returns a tuple with elements from index 1 to index 3.

my_tuple[:-7] returns a tuple with elements from beginning to index 2.

my_tuple[7:] returns a tuple with elements from index 7 to the end.

my_tuple[:] returns all tuple items.

Note: When we slice lists, the start index is inclusive but the end index is exclusive.

Data Frame

A Pandas DataFrame is a 2 dimensional data structure, like a 2 dimensional array, or a table

with rows and columns.

Example

Create a simple Pandas DataFrame:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

#load data into a DataFrame object:

df = pd.DataFrame(data)

print(df)

Result
 calories duration

 0 420 50
 1 380 40

 2 390 45

Locate Row

As you can see from the result above, the Data Frame is like a table with rows and columns.

Pandas use the loc attribute to return one or more specified row(s)

Example 1:

Return row 0:

#refer to the row index:

print(df.loc[0])

Result

 calories 420

 duration 50

 Name: 0, dtype: int64

Example 2:

Return row 0 and 1:

#use a list of indexes:

print(df.loc[[0, 1]])

Result
 calories duration
 0 420 50
 1 380 40

Named Indexes

With the index argument, you can name your own indexes.

Example-Add a list of names to give each row a name:

import pandas as pd

data = {

 "calories": [420, 380, 390],

 "duration": [50, 40, 45]

}

df = pd.DataFrame(data, index = ["day1", "day2", "day3"])

print(df)

Result
 calories duration

 day1 420 50

 day2 380 40
 day3 390 45

Sources:
https://www.w3schools.com/python/python_arrays.asp
https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.w3schools.com/python/pandas/pandas_dataframes.asp

https://www.w3schools.com/python/python_arrays.asp
https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.w3schools.com/python/pandas/pandas_dataframes.asp

