(Affiliated to Manonmanium Sundaranar University, Tirunelveli)
Run by : Wavoo SAR Educational Trust
(minority institution)

2333333 P L LLLeee

Department of Information Technology
Statistics with Python

Module 5: Data Visualization- Box plots, Pie Charts, Histograms, Bar Charts

Visualizing Data

In addition to calculating the numerical quantities like mean, median, or variance, you can use
visual methods to present, describe, and summarize data. In this section, we will learn how to
present your data visually using the following graphs:

Box plots
Histograms
Pie charts
Bar charts
X-Y plots
Heatmaps

Ll oR ol ol ol o

matplotlib.pyplot is a very convenient and widely-used library, though it’s not the only Python
library available for this purpose. You can import it like this:

>>> import matplotlib.pyplot as plt
>>> plt.style.use(‘ggplot’)

Now, you have matplotlib.pyplot imported and ready for use. The second statement sets the
style for your plots by choosing colors, line widths, and other stylistic elements.

Box Plot

A Box Plot is also known as Whisker plot is created to display the summary of the set of
data values having properties like minimum, first quartile, median, third quartile and
maximum. In the box plot, a box is created from the first quartile to the third quartile, a
vertical line is also there which goes through the box at the median. Here x-axis denotes the
data to be plotted while the y-axis shows the frequency distribution.

Creating Box Plot-The matplotlib.pyplot module of matplotlib library provides boxplot()
function with the help of which we can create box plots.

import matplotlib.pyplot as plt
import numpy as np

https://www.geeksforgeeks.org/pyplot-in-matplotlib/

Creating dataset

np.random.seed(10)

data = np.random.normal(100, 20, 200)
fig = plt.figure(figsize =(10, 7))

Creating plot

plt.boxplot(data)
show plot
plt.show()
Output:
—8

Customizing Box Plot

The matplotlib.pyplot.boxplot() provides endless customization possibilities to the box plot.
The notch = True attribute creates the notch format to the box plot, patch_artist = True fills

the boxplot with colors, we can set different colors to different boxes.The vert = 0 attribute

creates horizontal box plot. labels takes same dimensions as the number data sets.

Import libraries
import matplotlib.pyplot as plt
import numpy as np

Creating dataset
np.random.seed(10)

data_1 = np.random.normal(100, 10, 200)
data_2 = np.random.normal(90, 20, 200)
data_3 = np.random.normal(80, 30, 200)
data_4 = np.random.normal(70, 40, 200)
data = [data_1, data_2, data_3, data_4]

fig = plt.figure(figsize =(10, 7))
Creating axes instance
ax = fig.add_axes([0, 0, 1, 1])

Creating plot

bp = ax.boxplot(data)
show plot
plt.show()

Output:

[T]
L]

o L[]

Pie Charts

With Pyplot, you can use the pie() function to draw pie charts:

Example

import matplotlib.pyplot as plt
import numpy as np

y = np.array([35, 25, 25, 15])
plt.pie(y)

plt.show()

Labels to Pie chart
Add labels to the pie chart with the label parameter. The label parameter must be an array with

one label for each wedge:

Example

import matplotlib.pyplot as plt

import numpy as np

y = np.array([35, 25, 25, 15])

mylabels = ["Apples”, "Bananas", "Cherries", "Dates"]
plt.pie(y, labels = mylabels)

plt.show()

Bananas

Cherries

Shadow
Add a shadow to the pie chart by setting the shadows parameter to True:

Example:

import matplotlib.pyplot as plt

import numpy as np

y = np.array([35, 25, 25, 15])

mylabels = ["Apples”, "Bananas", "Cherries", "Dates"]

myexplode = [0.2, 0, 0, 0]

plt.pie(y, labels = mylabels, explode = myexplode, shadow = True)
plt.show()

Bananas

Cherries

Histogram

In Matplotlib, we use the hist() function to create histograms.
The hist() function will use an array of numbers to create a histogram, the array is sent into the
function as an argument.

The hist() function will read the array and produce a histogram:
Example

A simple histogram:

import matplotlib.pyplot as plt

import numpy as np

X = np.random.normal(170, 10, 250)

plt.hist(x)

plt.show()

50 4

20 4

10 ~

140 150 160 170 180 130

Bar_Charts
With Pyplot, you can use the bar() function to draw bar graphs:

Example

Drawing 4 bars:

import matplotlib.pyplot as plt
import numpy as np

x = np.array(["A", "B", "C", "D"])
y = np.array([3, 8, 1, 10])
plt.bar(x,y)

plt.show()

Source : https://realpython.com/python-statistics/#visualizing-data

https://realpython.com/python-statistics/#visualizing-data

