SCIENTIFIC COMPUTING WITH
PYTHON

Data Structure & File Handling

Course Coordinator: Dr. R. Mariyal Jebasty
Assistant Professor,
Department of Physics
Wavoo Wajeeha College of Arts &
Science
Kayalpatnam.



Course Instructors

1. Mrs. Pushpa, Assistant Professor in Physics, Wavoo Wajeeha
Women'’s College of Arts & Science, Kayalpatnam.

2. Dr. S. Usharani, Assistant Professorin Physics, Wavoo
Wajeeha Women'’s College of Arts & Science, Kayalpatnam.




List Comprehensions



e Lists are ordered sequences that can hold a
variety of object types.

e They use [] brackets and commas to separate
objects in the list.

o [1,2,3,4,5]

e Lists support indexing and slicing. Lists can be
nested and also have a variety of useful methods
that can be called off of them.



Height in Cm
Weight in Kgs

Age in Years

Ramesh_height = 150
Suresh_height = 145

Sudesh_height = 165

Ramesh_weight = 56
Suresh_weight = 60

Sudesh_weight = 65

Ramesh_age =23
Suresh_age = 46

Sudesh_age =58




Height in Cm
Weight in Kgs

Age in Years

Some info

Ramesh_height = 150
Suresh_height = 145

Sudesh_height = 165

Ramesh_weight =56
Suresh_weight = 60

Sudesh_weight = 65

HOW

b

es?

Ramesh age =23
Suresh_age = 46

Sudesh_age =58




Height in Cm
Weight in Kgs

Age in Years

Some info

Names = [‘Ramesh”, “Suresh”, “Sudesh”]
Height = [150, 145, 165]
Weight = [56, 60, 65]

Age = [23, 45, 58]




Height in Cm
Weight in Kgs

Age in Years

Some info

Names = [‘Ramesh”, “Suresh”, “Sudesh”]
Height = [150, 145, 165]
Weight = [56, 60, 65]

Age = [23, 45, 58]




What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.



What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.

list1=[2,3,4,5,6]



What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.

list1=[2,3,4,5,6]



What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.

2 ™ 3

list1=[2,3,4,5,6]



What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.

2 > 3 | 4

list1=[2,3,4,5,6]



What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.

2> 3| 4> 5> 6

list1=[2,3,4,5,6]



What is a List?

Alistis an ordered data structure with elements separated by comma and enclosed within square
brackets.
2 3 > 4> 56

list1=[2,3,4,5,6]
[ \_ Y,
Y

“‘ordered”




What is a List?

Alist is an ordered data structure with elements separated by comma and enclosed within square
brackets.

Some examples of List -

list1=[2,3,4,5,6]
* Single Data type

list2=[ 'Python’, 'is', 'Awesome' ]



What is a List?

« Alistis an ordered data structure with elements separated by comma and enclosed within
square brackets.

Some examples of List -

list1=[2,3,4,5,6]
* Single Data type

list2=[ 'Python’, 'is"', "Awe

v

ome ']

list3=[1,'Python',2,'is",3, 'Awesome’ —— Mixed Datatype



Extracting values from a List

0 1 2 3 4 5 === |ndex

list3=[1, 'Python’,2,'is",3, 'Awesome’

. list3[1
To extract a single element  ——

‘Python’

list3[1:4
To extract a sequence of elements ——
['Python', 2, 'is']



Extracting values from a List

0 1 2 3 4 5 === |ndex

list3=[1, 'Python’,2,'is",3, 'Awesome’ ]

list3[1

To extract a single element ~ —— ,
‘python’ Startindex

list3/1:41 end index

To extract a sequence of elements ——
['Python', 2, 'is']



Adding elements to an existing List

list3=[1, 'Python',2,'is",3, 'Awesome’



Adding elements to an existing List

list3=[1, 'Python’,2,'is",3, 'Awesome’

. . list3.append(4)
Adding a single element ——

list3

[1, 'Python’, 2, 'is', 3, '"Awesome', 4]



Adding elements to an existing List

list3=[1, 'Python’,2,'is",3, 'Awesome’

. . list3.append(4)
Adding a single element ——

1ist3

[1, 'Python’, 2, 'is', 3, '"Awesome', 4]

list3.extend([5,6])

Adding multiple elements

e —

list3

[1, 'Python', 2, 'is', 3, 'Awesome', 4, 5, 6]



Adding elements to an existing List

list3=[1, 'Python’,2,'is",3, 'Awesome’

list3.append([7,8])

Adding list to a list — _
list3

[1, 'Python', 2, 'is', 3, 'Awesome', [7, 8]]



Deleting elements of a List

list3=[1, 'Python’,2,'is", 3, 'Awesome’



Deleting elements of a List

list3=[1, 'Python’,2,'is",3, 'Awesome’

. list3.remove(2)
Deleting an element by value —— (2)

list3

[1, 'Python’, 'is', 3, 'Awesome’]



Deleting elements of a List

list3=[1, 'Python’,2,'is", 3, 'Awesome’



Indexing

This returns the whole list.

Negative indices- The indices we mention can be negative as well. A
negative index means traversal from the end of the list.



Deleting elements of a List

list3=[1, 'Python’,2,'is", 3, 'Awesome’

del 1list3[3]

Deleting an element by index —— list3

[1, 'Python’, 2, 3, 'Awesome’]



List Data Structure: Summary

{ Store } { Represent }

{ Manipulate }




List Data Structure: Summary

{ Store } { Represent }

e Multiple values

e Multiple datatypes { Manipulate }




List Data Structure: Summary

Store } { Represent

Multiple values

Multiple data types { Manipulate }

e Extract values
e Add values (append, extend, insert)
e Remove values (del, remove, pop)

e Looping over values



List Data Structure: Summary

Store } { Represent }

e Multiple values e Ordered/Sequential

e Multiple datatypes { Manipulate }

e Extract values

e Add values (append, extend,
insert)

e Remove values (del, remove, pop)

e Looping over values



Tuple



Tuples are very similar to lists. However they have
one key difference - immutability.

Once an element is inside a tuple, it can not be
reassigned.

Tuples use parenthesis: (1,2,3)



Tuple in Python (Data Structure)

my tuple = (1, 2, 3, "Hello")

my tuple
(1; 2, 3, "Helko")



Tuple in Python (Data Structure)

e Ordered collection of elements
my tuple = (1, 2, 3, "Hello")

my tuple
(1; 2, 3, "Helko")



Tuple in Python (Data Structure)

e Ordered collection of elements
my tuple = (1, 2, 3, "Hello")

e |Immutable
my tuple

(1; 2, 3, "Hello*)



Tuple in Python (Data Structure)

e Ordered collection of elements
my tuple = (1, 2, 3, "Hello")

e |Immutable
my tuple

e Uses circular brackets in syntax (1, 2, 3, 'Hello')



Benefits of using Tuple

e Faster than lists
e Provide security over updation

e Unlike lists, can be used as key for dictionaries



List Data Structure: Summary

{ Store } { Represent }

{ Manipulate }




List Data Structure: Summary

{ Store } { Represent }

e Multiple values

e Multiple datatypes { Manipulate }




List Data Structure: Summary

Store } { Represent

Multiple values

Multiple data { Manipulate }

types

e Extract values

e Add values (append, extend,
insert)

e Remove values (del, remove, pop)

e Looping over values



List Data Structure: Summary

Store } { Represent }

e Multiple values e Ordered/Sequential

e Multiple data { Manipulate }

types

e Extract values

e Add values (append, extend,
insert)

e Remove values (del, remove,
pop)
e Looping over values



Tuple Data Structure: Summary

{ Store } { Represent }

e Ordered/Sequential

e Multiple values

e Multiple data Manipulate
types

e [Extract values

e Looping over values



Dictionary



e Dictionaries are unordered mappings for storing
objects.

e Previously we saw how lists store objects in an
ordered sequence, dictionaries use a key-value
pairing instead.

e This key-value pair allows users to quickly grab
objects without needing to know an index
location.



e Dictionaries use curly braces and colons to signify
the keys and their associated values.

{'keyl':'valuel','key2':'value2'}

e S0 when to choose a list and when to choose a
dictionary?



e Dictionaries: Objects retrieved by key name.
Cannot be indexed or sliced

e Lists: Objects retrieved by location.

Ordered Sequences can be indexed or sliced.



Employee General Info:

Name

Suresh |
O

Lakshay
Vinesh
Aishwarya
Ankit
Faizan
Pranav
Pulkit
Ram
Abhiraj

Height

165
125
140
175
131
178
162
163
173
156

Weight

81
76
55
89
68
76
73
67
54
53

Age

31
29
25
25
27
22
35
24
25
21

Multiple columns

A

‘ A

Marital Status Favorite Sports Education
Married Cricket Graduate
Married Soccer Graduate
Single Golf Graduate
Single Cricket, Tennis Graduate
Married Soccer, Cricket Graduate
Single Cricket Graduate
Married Soccer Graduate
Single Badminton Graduate
Single Cricket Graduate
Single Soccer, Badminton Graduate



e HeightinCm

e WeightinKgs Names = [“Ramesh”, “Suresh”, “Sudesh’]

e AgeinYears Height = [150, 145, 165] pu—

Weight = [56, 60, 65]

Age = [23, 45, 58]




Height in Cm
Weight in Kgs

Age in Years

Some info

Names = [‘Ramesh”, “Suresh”, “Sudesh”]
Height = [150, 145, 165]
Weight = [56, 60, 65]

Age = [23, 45, 58]

How Many Lists?




Lists

|

Names = [“Ramesh”, “Suresh”, “Sudesh”]
Height = [150, 145, 165]

Weight = [56, 60, 65]

Age = [23, 45, 58]




Lists Dictionary

13 b 11 b 11 I employee_lnfo = {
Names = [“Ramesh”, “Suresh”, “Sudesh”] “names” : [‘Ramesh’”, “Suresh”, “Sudesh’],
Weight = [56, 60, 65] “weight” : [56, 60, 65],
Age = [23, 45, 58] “age” [23, 45, 58]
}




What is a Dictionary?

e Adictionary is an unordered data structure.
e Elements are separated by a comma and stored as key : value pair.

e Adictionary is enclosed within curly brackets.

Some examples of Dictionary -
dictl={'Ramesh': 158, 'Suresh': 146, 'Sudesh': 160} -— key : value, where value is a
number

dict2={'Ramesh’':[156,46], 'Suresh’:[146,58], 'Sudesh':[166,50] —
key : value, where value is a List



Accessing elements of a Dictionary

Elements are accessed by keys rather than

index.
dict2={'Ramesh’':[158,46], 'Suresh’:[146,58], 'Sudesh':[168,50]
dict2[1]
Dictionary accessed by index ——— [0 L Teanchack: fwast pace
<ipython-input-6-dcfc8a4cde39> in 0 ()

——--> 1 dict2[1]

KeyError: 1



Accessing elements of a Dictionary

Elements are accessed by keys rather than index.

dict2={'Ramesh’':[158,46], 'Suresh’:[146,58], 'Sudesh':[168,50]

ot dict2['Suresh’
Dictionary accessed by key . C-2L 2uresh’]

[146, 58]



Adding elements to a Dictionary

dict2={'Ramesh’':[150,46], 'Suresh’:[146,58], 'Sudesh':[1608,50]

dict2['Neeraj']=[176,75]

Adding a single element —— dict2

{'Neeraj’': [176, 75],
'"Ramesh’: [15@, 46],
'Sudesh': [16@, 5e€],
‘Suresh’: [146, 58]}



Adding elements to a Dictionary

dict2={'Ramesh’':[150,46], 'Suresh’:[146,58], 'Sudesh':[160,50]

dict2.update({'sunil':[156,706], 'disha':[155,808]}

Adding multiple elements atonce —  gict2

{'Ramesh’: [15@, 46],
‘Sudesh': [16@, 5@],
‘Suresh': [146, 58],
‘disha’': [155, 8e],
‘sunil': [150, 7@]}



Deleting element of a Dictionary

dict2={'Ramesh’':[150,46], 'Suresh’:[146,58], 'Sudesh':[1608,50]

del dict2['Ramesh’]
Deleting an element —

dict2

{'Sudesh': [16@, 58], 'Suresh’: [146, 58]}



Functions



Radius=1
cm




Radius=1
cm




Radius =1
cm

—

Pseudo-Code:

Area of Circle:
Task 1. Take radius 1
Task 2. Calculate 1*1

Task 3. Multiply 3.14 by 1*1




Radius=1
cm
Radius = 3

cm

Pseudo-Code:

Area of Circle:
Task 1. Take radius 1
Task 2. Calculate 1*1

Task 3. Multiply 3.14 by 1*1




Radius=1

cm ‘

Radius = 3
cm

Pseudo-Code:

Area of Circle:
Task 1. Take radius 1
Task 2. Calculate 1*1

Task 3. Multiply 3.14 by 1*1




Radius=1
cm
Radius = 3
cm

—

Pseudo-Code:

Area of Circle:
Task 1. Take radius 1

Task 2. Calculate 1*1
Task 3. Multiply 3.14 by 1*1

Pseudo-Code:

Area of Circle:
Task 1. Take radius 3

Task 2. Calculate 3*3
Task 3. Multiply 3.14 by 3*3




Pseudo-Code:

Area of Circle:

Task 1. Take
‘ radius 1 Task
2. Calculate
1*1
Task 3. Multiply 3.14 by 1*1

Radius=1cm

I
Multiple Circles of different Radius!;!;euldo_Code:

Area of Circle:

Radius = 3 ‘ Task 1. Take radius 3

cm Task 2. Calculate 3*3
Task 3. Multiply 3.14 by 3*3




Radius =1
cm
Radius = 3

cm

Solution
Looping

1:

list of radius
Pseudo-Code:

for r in radius_list:

Area of Circle:
Task 1. Take radius r
Task 2. Calculate r*r
Task 3. Multiply 3.14 by r*r
Task 4. You get the area




Solution #2: Function

Radius=1
cm
Radius = 3
cm

—

—

Pseudo-Code:

Area of Circle:
Task 1. Take radius
Task 2. Calculate

Task 3. Multiply 3.14 by

Pseudo-Code:

Area of Circle:
Task 1. Take radius
Task 2. Calculate

Task 3. Multiply 3.14 by




Solution #2: Function

Radius=1

cm ‘

Same steps

Radius = 3 ‘

cm

(

Pseudo-Code:

Area of Circle:
Task 1. Take radius
Task 2. Calculate

Task 3. Multiply 3.14 by

Pseudo-Code:

Area of Circle:
Task 1. Take radius
Task 2. Calculate

Task 3. Multiply 3.14 by




Function in Python

Code Pseudo-Code:

Area of Circle:

Task 1. Take radius r

Task 2. Calculate r*r
area=3.14*r* Task 3. Multiply 3.14 by r*r
Task 4. You get the area

def area_circle(r):

r return area




What are
Functions?

What are
functions? Code

def area_circle(r):

area=3.14*r*

r return area




What are
Functions?

Code

What is functions?

e Reusable piece of code

def area_circle(r):

area=3.14*r*

r return area




What are
Functions?

What is functions?

Code
e Reusable piece of code :

e Created for solving specific problem def area_circle(r):
area=3.14*r*

r return area




Function:
Syntax

Code Pseudo-Code:

Area of Circle:

Task 1. Take radius r

Task 2. Calculate r*r
area=3.14*r* Task 3. Multiply 3.14 by r*r
Task 4. You get the area

def area_circle(r):

r return area




Function:
Syntax

Code L — ——Pseudo-Code:

I .
< Area of Circle:
—Take radius r

Task 2. Calculate r*r
area=3.14*r* Task 3. Multiply 3.14 by r*r
Task 4. You get the area

def area_circleyr):

r return area




Function:
Syntax

Code Pseudo-Code:
' — Area of Circte:
dotwen cicelsy T
etarea_cir Task 2. Calculate r*r
area=3.14*r* Task 3. Multiply 3.14 by r*r

Task 4. You get the area
I return area




Function:
Syntax

Code: Pseudo-Code:

Area of Circle:

Task 2. Calculate r*r
area=3.14*r* Task 3. Multiply 3.14 by r*r
i Task 4. You get the area
I return area




Function:
Syntax

Code Pseudo-Code:

Area of Circle:

Task 1. Take radius r

Task 2. Calculate r*r
area=3.14*r* Task 3. Multiply 3.14 by r*r
Task 4. You get the area

def area_circle(r):

r




Functions

Radius=1
cm ‘ area_circle(1)



Functions

Radius=1

cm ‘ area_circle(1)

Radius = 3 ‘ area_circle(3)

cm

Any radius!



Types of Functions

Functions in
Python



Types of
Functions

Functions in

o=

Built-In

e print()

e range()

e append()

e extend() etc.



Types of
Functions

Functions in

o=

Built-In

print()
range()

append()

extend() etc.

User-

—Defined———

e area_circle()



Types of
Functions

Functions in

o=

Built-In

print()
range()

append()

extend() etc.

User-

—Defined———

e area_circle()

Lambda Functions




Types of
Functions

Functions in

/BMWn \.

Built-In Recursion
e print()
e range() .
e append() User- Lambda Functions
e extend() etc. —pPefired—-

e area_circle()



File Handling



Python Files 1/O

Printing to the Screen:

*  The simplest way to produce output is using the print statement where you can
pass zero or more expressions, separated by commas. This function converts the
expressions you pass it to a string and writes the result to standard output as
follows:

print "Python is really a great language,", "isn't it?";
*  This would produce following result on your standard screen:

Python is really a great language, isn't it?



Reading Keyboard Input:

Python provides two built-in functions to read a line of text from standard input,
which by default comes from the keyboard. These functions are:

raw_input

input

The raw_input Function:

The raw_input([prompt]) function reads one line from standard input and
returns it as a string (removing the trailing newline):

str = raw input ("Enter your input: ");
print "Received input is : ", str

This would prompt you to enter any string and it would display same string on
the screen. When | typed "Hello Python!", it output is like this:

Enter your input: Hello Python
Received input is : Hello Python



The input Function:

The input([prompt]) function is equivalent to raw_input, except that it assumes
the input is a valid Python expression and returns the evaluated result to you:

str = input ("Enter your input: ");
print "Received input is : ", str

This would produce following result against the entered input:
Enter your input: [x*5 for x in range(2,10,2)]
Recieved input is : [10, 20, 30, 40]



Opening and Closing Files:

. Until now, you have been reading and writing to the standard input and output.
Now we will see how to play with actual data files.

. Python provides basic functions and methods necessary to manipulate files by
default. You can do your most of the file manipulation using a file object.
*  The open Function:

Before you can read or write a file, you have to open it using Python's built-in
open() function. This function creates a file object which would be utilized to
call other support methods associated with it.

. Syntax:

file object = open(file name [, access mode] [,
buffering])



Paramters detail:

file_name: The file_name argument is a string value that contains the name of the file
that you want to access.

access_mode: The access_mode determines the mode in which the file has to be opened
ie. read, write append etc. A complete list of possible values is given below in the table.
This is optional parameter and the default file access mode is read (r)

buffering: If the buffering value is set to 0, no buffering will take place. If the buffering
value is 1, line buffering will be performed while accessing a file. If you specify the
buffering value as an integer greater than 1, then buffering action will be performed with
the indicated buffer size. If negative, the buffer size is the system default(default
behavior).



A list of the different modes of opening a file:

r Opens a file for reading only. The file pointer is placed at the beginning
of the file. This is the default mode.

rb Opens a file for reading only in binary format. The file pointer is placed
at the beginning of the file. This is the default mode.

r+ Opens a file for both reading and writing. The file pointer will be at the

beginning of the file.

rb+ Opens a file for both reading and writing in binary format. The file
pointer will be at the beginning of the file.

w Opens a file for writing only. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

wb Opens a file for writing only in binary format. Overwrites the file if the
file exists. If the file does not exist, creates a new file for writing.

w+ Opens a file for both writing and reading. Overwrites the existing file if

the file exists. If the file does not exist, creates a new file for reading
and writing.



A list of the different modes of opening a file:

ab

at+

ab+

Opens a file for appending. The file pointer is at the end of the file if the
file exists. That is, the file is in the append mode. If the file does not
exist, it creates a new file for writing.

Opens a file for appending in binary format. The file pointer is at the end
of the file if the file exists. That is, the file is in the append mode. If the
file does not exist, it creates a new file for writing.

Opens a file for both appending and reading. The file pointer is at the
end of the file if the file exists. The file opens in the append mode. If the
file does not exist, it creates a new file for reading and writing.

Opens a file for both appending and reading in binary format. The file
pointer is at the end of the file if the file exists. The file opens in the
append mode. If the file does not exist, it creates a new file for reading
and writing.



The file object atrributes:

Once a file is opened and you have one file object, you can get various
information related to that file.

Here is a list of all attributes related to file object:

file.closed Returns true if file is closed, false otherwise.
file.mode Returns access mode with which file was opened.
file.name Returns name of the file.

file.softspace Returns false if space explicitly required with print, true
otherwise.



Example:

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name
print "Closed or not : ", fo.closed
print "Opening mode : ", fo.mode

print "Softspace flag : ", fo.softspace

This would produce following result:
Name of the file: foo.txt
Closed or not : False
Opening mode : wb
Softspace flag : 0



The close() Method:
The close() method of a file object flushes any unwritten information
and closes the file object, after which no more writing can be done.

Python automatically closes a file when the reference object of a file is
reassigned to another file. It is a good practice to use the close()
method to close a file.

*  Syntax:
fileObject.close();
Example:
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name
fo.close()
*  This would produce following result:
Name of the file: foo.txt



Reading and Writing Files:

The file object provides a set of access methods to make our lives easier. We would
see how to use read() and write() methods to read and write files.

The write() Method:

*  The write() method writes any string to an open file. It is important to note that
Python strings can have binary data and not just text.

*  The write() method does not add a newline character ('\n') to the end of the
string:

Syntax:
fileObject.write(string);



Example:
fo = open("foo.txt", "wb")

fo.write( "Python is a great language.\r\nYeah its
great!!\r\n");

fo.close ()

The above method would create foo.txt file and would write given content in
that file and finally it would close that file. If you would open this file, it would
have following content

Python is a great language.

Yeah its great!!



The read() Method:

The read() method read a string from an open file. It is important to note that
Python strings can have binary data and not just text.

Syntax:
fileObject.read([count]);

Here passed parameter is the number of bytes to be read from the opend file.
This method starts reading from the beginning of the file and if count is missing
then it tries to read as much as possible, may be until the end of file.

Example:
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str
fo.close()
This would produce following result:
Read String is : Python 1is



File Positions:

The tell() method tells you the current position within the file in other
words, the next read or write will occur at that many bytes from the
beginning of the file:

The seek(offset[, from]) method changes the current file position. The
offset argument indicates the number of bytes to be moved. The from

argument specifies the reference position from where the bytes are to
be moved.

If from is set to O, it means use the beginning of the file as the reference
position and 1 means use the current position as the reference position
and if it is set to 2 then the end of the file would be taken as the
reference position.



Example:
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str
position = fo.tell();
print "Current file position : ", position
position = fo.seek (0, 0);
str = fo.read(10);
print "Again read String is : ", str
fo.close()
*  This would produce following result:
Read String is : Python is
Current file position : 10
Again read String is : Python is



Renaming and Deleting
Files:

. Python os module provides methods that help you perform file-processing
operations, such as renaming and deleting files.

*  To use this module you need to import it first and then you can all any related
functions.

The rename() Method:
The rename() method takes two arguments, the current filename and the new
filename.

Syntax:
os.rename (current file name, new file name)

Example:
import os
os.rename ( "testl.txt", "test2.txt" )



The delete() Method:

You can use the delete() method to delete files by supplying the name of the file
to be deleted as the argument.

Syntax:
os.remove (file name)
Example:
import os

os.remove ("test2.txt")



Directories in Python:

All files are contained within various directories, and Python has no problem
handling these too. The os module has several methods that help you create,
remove, and change directories.

The mkdir() Method:
You can use the mkdir() method of the os module to create directories in the

current directory. You need to supply an argument to this method, which
contains the name of the directory to be created.

Syntax:
os.mkdir ("newdir")
Example:
import os # Create a directory "test"

os.mkdir ("test")



The chdir() Method:

You can use the chdir() method to change the current directory. The chdir()
method takes an argument, which is the name of the directory that you want to
make the current directory.

Syntax:
os.chdir ("newdir")
Example:
import os

os.chdir ("/home/newdir")



The getcwd() Method:
The getcwd() method displays the current working directory.
Syntax:
os.getcwd ()
Example:
import os

os.getcwd ()



The rmdir() Method:

The rmdir() method deletes the directory, which is passed as an argument in the
method.

Before removing a directory, all the contents in it should be removed.
Syntax:
os.rmdir ('dirname')
Example:
import os

os.rmdir( "/tmp/test" )



File & Directory Related Methods:

There are three important sources which provide a wide range of utility methods to handle and manipulate
files & directories on Windows and Unix operating systems. They are as follows:

— File Object Methods: The file object provides functions to manipulate files.

— OS Object Methods.: This provides methods to process files as well as directories.



http://www.tutorialspoint.com/python/file_methods.htm
http://www.tutorialspoint.com/python/os_file_methods.htm

For More Details

v https://data-flair.training/blogs/python-list-
comprehension/

v’ https://data-flair.training/blogs/python-tuple/

v’ https://data-flair.training/blogs/python-dictionary/

v’ https://data-flair.training/blogs/python-function/

v’ https://data-flair.training/blogs/file-handling-in-python/



https://data-flair.training/blogs/python-list-comprehension/
https://data-flair.training/blogs/python-tuple/
https://data-flair.training/blogs/python-dictionary/
https://data-flair.training/blogs/python-function/
https://data-flair.training/blogs/file-handling-in-python/

Thank You



