
SCIENTIFIC COMPUTING WITH

PYTHON

Operators

Course Coordinator: Dr. R. Mariyal Jebasty
Assistant Professor,
Department of Physics
Wavoo Wajeeha College of Arts & Science
Kayalpatnam.

Course Instructors

1. Mrs. Pushpa, Assistant Professor in Physics, Wavoo Wajeeha
Women’s College of Arts & Science, Kayalpatnam.
2. Dr. S. Usharani , Assistant Professor in Physics, Wavoo
Wajeeha Women’s College of Arts & Science, Kayalpatnam.

Operands Operator

Operators

● What are

Operators?

● Symbols that represent mathematical or logical tasks.

Task Symbol

Addition +

Subtraction -

Multiplication *

Division /3 + 5

Arithmetic Operators Logical OperatorsComparison Operators

Different Types of Operators

Operators

Arithmetic Operators

• Addition +

• Subtraction –

• Multiplication *

• Division /

• Modulo %

• Floor division //

• Exponent **

Different Types of Operators

Addition -> 3 + 5 + 6 = 14

Subtraction -> 6 - 4 - 2 = 0
• Addition +

• Subtraction –

• Multiplication *

• Division /

• Modulo %

• Floor division //

Different Types of Operators

• Exponent **

Arithmetic Operators

Addition -> 3 + 5 + 6 = 14

Subtraction ->

Multiplication ->

Division ->

6 - 4 - 2 = 0

3 * 5 * 6 = 90

5 / 3 = 1.67

• Addition +

• Subtraction –

• Multiplication *

• Division /

• Modulo %

• Floor division //

Different Types of Operators

• Exponent **

Arithmetic Operators

Addition ->3 + 5 + 6 = 14

Subtraction ->

Multiplication ->

6 - 4 - 2 = 0

3 * 5 * 6 = 90

Division -> 5 / 3 = 1.67

Modulo -> 5 % 3 = 2

Floor
Division

-> 5 // 3 = 1

• Addition +

• Subtraction –

• Multiplication *

• Division /

• Modulo %

• Floor division //

Different Types of Operators

• Exponent **

Arithmetic Operators

Addition ->3 + 5 + 6 = 14

Subtraction ->

Multiplication ->

6 - 4 - 2 = 0

3 * 5 * 6 = 90

Division -> 5 / 3 = 1.67

Modulo -> 5 % 3 = 2

Floor
Division

-> 5 // 3 = 1

Exponent -> 5 ** 3 = 125

• Addition +

• Subtraction –

• Multiplication *

• Division /

• Modulo %

• Floor division //

Different Types of Operators

• Exponent **

Arithmetic Operators

Different Types of Operators

Comparison Operators

• Less than <

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

• Not equal to !=

• Less than <

Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators

Different Types of Operators

Less than -> x < y -> ?

• Less than <

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

• Not equal to !=

Comparison Operators 3 5

x y

• Less than <

Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators

Different Types of Operators

Less than -> x < y -> True!

• Less than <

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

• Not equal to !=

Comparison Operators 3 5

x y

• Less than <

Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators

Different Types of Operators

Less than -> x < y -> ?

• Less than <

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

• Not equal to !=

Comparison Operators 17 5

x y

• Less than <

Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators

Different Types of Operators

Less than -> x < y -> False

• Less than <

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

• Not equal to !=

Comparison Operators 17 5

x y

• Less than <

Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators

Different Types of Operators

Less than -> x < y

Less than or equal to -> x <= y

Equal to -> x == y

• Less than <

• Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Comparison Operators 17 5

x y

• Less than <

Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators

Different Types of Operators

Less than -> x < y

Less than or equal to -> x <= y

Equal to -> x == y

Greater than -> x > y

Greater than or equal to ->x <= y

• Less than <

Not Equal to -> x != y• Not equal to !=

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

Relational Operators 17 5

x y

Different Types of Operators

Logical Operators

• and

• or

• not

Different Types of Operators

and -> True only if both comparisons are

True.

• and

• or

• not

Logical Operators

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> ?
• and

• or

• not

Logical Operators
3 7

x y

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> True and False
• and

• or

• not

Logical Operators
3 7

x y

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> True and False --> False
• and

• or

• not

Logical Operators
3 7

x y

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> True and False --> False

or -> True if either of the comparisons are True.

x < 5 or y > 8 --> True or False

• and

• or

• not

Logical Operators
3 7

x y

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> True and False --> False

or -> True if either of the comparisons are True.

x < 5 or y > 8 --> True or False --> True

• and

• or

• not

Logical Operators
3 7

x y

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> True and False --> False

or -> True if either of the comparisons are True.

x < 5 or y > 8 --> True or False --> True

not -> True if comparison is False and vice-versa.

not x < 5 --> not True

• and

• or

• not

Logical Operators
3 7

x y

Different Types of Operators

and -> True only if both comparisons are

True.

x < 5 and y > 8 --> True and False --> False

or -> True if either of the comparisons are True.

x < 5 or y > 8 --> True or False --> True

not -> True if comparison is False and vice-versa.

not x < 5 --> not True --> False

• and

• or

• not

Logical Operators
3 7

x y

• Addition +

• Subtraction –

• Multiplication *

• Division /

• Modulo %

• Floor division /

• Exponent **

Arithmetic Operators

Summary

• Less than <

• Less than or Equal to <=

• Equal to ==

• Greater than >

• Greater than or equal to >=

• Not equal to !=

Relational Operators

• and

• or

• not

Logical Operators

Python Assignment Operator

Python Identity Operator

• is Operator in Python

• is not Operator in Python

Python Membership Operator

• operators test whether a value is a member of a sequence. The
sequence may be a list, a string, or a tuple.

• We have two membership python operators- ‘in’ and ‘not in’.

Python Logical Operator

Python Bitwise Operator

Example

• i/p: 1 & 3

• o/p: 2

• It perform Bit by bit AND operation

• Here, binary for 1 is 01, and that for 3 is 11. &-ing them results
in 01, which is binary for 1.

Looping Statements

Scenario

● Print “Python is awesome” 1000 times

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

…….

…….

…….

…….

…….

Scenario

● Print “Python is awesome” 1000 times

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

print(“Python is awesome”)

…….

…….

…….

…….

…….

Looping Statements!!

● Print “Python is awesome” 1000 times

Pseudo-Code:

Looping constructs in Python

● Print “Python is awesome” 1000 times

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

Looping constructs in Python

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

Looping constructs in Python

Code

:
for i in range(1000):

print(“Python is awesome”)

● Print “Python is awesome” 1000 times

● The ‘for’ loop in python

Syntax:

for iterating_variable in sequence:

statements(s)

Looping constructs in Python: The for loop

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

● The ‘for’ loop in python

Syntax:

for iterating_variable in sequence:

statements(s)

Looping constructs in Python: The for loop

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

4 space

“indentation”

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

Looping constructs in Python: The for loop

Code

:
for i in range(1000):

print(“Python is awesome”)

● The ‘for’ loop in python

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

Looping constructs in Python: The for loop

Code

:for i in range(1000):

print(“Python is awesome”)

● The ‘for’ loop in python

4 space

“indentation”

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

Looping constructs in Python: The for loop

Code

:for i in range(1000):

print(“Python is awesome”)

● The ‘for’ loop in python

4 space

“indentation”

“stop condition”

Types of loops: Example

Types of loops: Example

Scenario #1:

Pass in 5 subjects:

● Math

● Physics

● English..etc.

Types of loops: Example

Pass in 5 subjects:

● Math

● Physics

● English..etc.

Code:

for subject in range(5):

Pass exam 5 times

Once for each subject

Scenario #1:

Types of loops: Example

Pass in 5 subjects:

● Math

● Physics

● English..etc.

Code:

for subject in range(5):

Pass exam 5 times

Once for each subject

Scenario #1:

“stop condition”

Types of loops: Example

Scenario #2:

● Secure at least an A grade in

Math to pass.

Types of loops: Example

Scenario #2:

● Secure at least an A grade in

Math to pass.

● When do you stop?

Types of loops: Example

Scenario #2:

● Secure at least an A grade in

Math to pass.

● When do you stop?

● Keep trying until you succeed!

● New kind of looping needed..

Types of loops: Example

Scenario #2:

● Secure at least an A grade in

Math to pass.

● When do you stop?

● Keep trying until you succeed!

● New kind of looping needed..

Code:

while grade != ‘A’:

Keep repeating until

comparison gives a False

Types of loops: Example

Scenario #2:

● Secure at least an A grade in

Math to pass.

● When do you stop?

● Keep trying until you succeed!

● New kind of looping needed..

Code:

while grade != ‘A’:

Keep repeating until

comparison gives a False

comparison (“stopping criteria”)

● The ‘while’ loop in

python

Syntax:

while comparison:

statements(s)

Looping constructs in Python: The while loop

Code:

while grade != ‘A’:

Keep repeating until

comparison gives a False

Looping constructs in Python: Summary

‘while’ loop

Code:

while grade != ‘A’:

Keep repeating until

comparison gives a False

‘for’ loop

Code:

for subject in range(5):

Pass exam 5 times

Once for each subject

Conditional Statements

Conditional Statements: Scenario

Example

Arrive Home

Late (After 10 PM)On-time

OrderCook

Example

Conditional Statements: Scenario

Conditional Statements

Arrive Home

On-time

OrderCook

Late (After 10 PM)

Conditional Statements

Arrive Home

On-time

OrderCook food = “order”food = “cook”

arrive_time > 10

Late (After 10 PM)

Conditional Statements

Arrive Home

On-time

OrderCook food = “order”food = “cook”

variable

arrive_time > 10

Late (After 10 PM)

Conditional Statements

Arrive Home

On-time

OrderCook food = “order”food = “cook”

variable

comparison

arrive_time > 10

Late (After 10 PM)

Conditional Statements

Arrive Home

On-time

OrderCook

True

food = “order”food = “cook”

variable

comparison

arrive_time > 10

Late (After 10 PM)

Conditional Statements

Arrive Home

On-time

OrderCook

TrueFalse

food = “order”food = “cook”

variable

arrive_time > 10

Late (After 10 PM)

comparison

Conditional Statements

TrueFalse

food = “order”food = “cook”

arrive_time > 10
Pseudo-Code

Conditional Statements

arrive_time > 10

TrueFalse

food = “order”food = “cook”

Pseudo-Code

Check if arrive_time > 10

TrueFalse

food = “order”food = “cook”

Conditional Statements

arrive_time > 10
Pseudo-Code

Check if arrive_time > 10

then food = “order”

Conditional Statements

arrive_time > 10

TrueFalse

food = “order”food = “cook”

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

if arrive_time >10:

food = “order”

else:

food = “cook”

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

if arrive_time >10:

food = “order”

else:

food = “cook”

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

if arrive_time >10:

food = “order”

else:

food = “cook”

4 space

“indentation”

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

if arrive_time >10:

food = “order”

else:

food = “cook”

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

if arrive_time >10:

food = “order”

else:

food = “cook”

Conditional Statements

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Code

if arrive_time >10:

food = “order”

else:

food = “cook”

Conditional Statements: The if statement

● If – else statements : Single Condition

Syntax

if condition:

statement 1

else:

statement 2

Pseudo-Code

Check if arrive_time > 10

then food = “order”

else food = “cook”

Conditional Statements: Multiple conditions

● If – elif – else statements : Multiple Conditions

● If – elif – else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to 0 or “negative” if x is less

than 0.

Conditional Statements: Multiple conditions

● If – elif – else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to 0 or “negative” if x is less

than 0.

Pseudo-Code

Check if x>0

if yes then print(“positive”)

Otherwise check if x==0

if yes then print(“zero”)

For every other situation just print(“negative”)

Conditional Statements: Multiple conditions

Check if x>0

if yes then print(“positive”)

Otherwise check if x==0

if yes then print(“zero”)

For every other situation just print(“negative”)

● If – elif – else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to 0 or “negative” if x is less

than 0.

Pseudo-Code Code

if x>0:
print(“positive”)

elif x==0:

print(“zero”)

else:

print(“negative”)

Conditional Statements: Multiple conditions

Check if x>0

if yes then print(“positive”)

Otherwise check if x==0

if yes then print(“zero”)

For every other situation just print(“negative”)

● If – elif – else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to 0 or “negative” if x is less

than 0.

Pseudo-Code Code

if x>0:
print(“positive”)

elif x==0:

print(“zero”)

else:

print(“negative”)

Conditional Statements: Multiple conditions

Conditional Statements: The if-elif-else

● If – elif – else statements : Multiple Conditions

Pseudo-Code

Check if x>0

if yes then print(“positive”)

Otherwise check if x==0

if yes then print(“zero”)

For every other situation just print(“negative”)

Syntax

if condition1:

statement 1

elif

condition2:

statement 2

else:

statement 3

Conditional Statements: Multiple elifs

● If – elif – else statements : Multiple Conditions

Syntax

if condition1:

statement 1

elif condition2:

statement 2

.

.

.
elif condition99:

statement 99

else:

statement 100

1/25/23, 3:36 PM 7_Looping statement.ipynb - Colaboratory

https://colab.research.google.com/drive/1s6rbmx0AHrGhcpu87hAg0BgQaqfHHiYh#scrollTo=vTKV-_QxY-a5&printMode=true 1/2

Looping Statements

for i in range(10):
 print(i)

print("hello")
print("world")

print("hello",end=" ")
print("world")

print("hello",end="*")
print("world",end="*")
print("to all...")

help(range)

range(10)

for i in range(10,100):
 print(i, end=" ")

a = 10

for i in range(100,10,-5):
 print(i, end=" ")

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15

mark_list = [95, 90, 85, 80, 75]

for mark in mark_list:
 if mark > 80:
 print("pass")
 else:
 print("fail")

pass
pass
pass
fail
fail

subject = ['maths', 'science', 'social', 'english', 'tamil']
mark_list = [95, 90, 85, 80, 75]

for i in range(5):
 if mark_list[i] > 80:
 print(subject[i], mark_list[i]," - pass")
 else:
 print(subject[i], mark_list[i]," - fail")

maths 95 - pass
science 90 - pass
social 85 - pass
english 80 - fail
tamil 75 - fail

for i in range(2,5):
 for j in range(1,5):
 print(i,j)

Show hidden output

number = int(input("enter a number"))
string = "Nielit Chennai"
for i in range(len(string)):
 print(i)

Show hidden output

1/25/23, 3:36 PM 7_Looping statement.ipynb - Colaboratory

https://colab.research.google.com/drive/1s6rbmx0AHrGhcpu87hAg0BgQaqfHHiYh#scrollTo=vTKV-_QxY-a5&printMode=true 2/2

for i in string:
 print(i)

Show hidden output

i = 0

while i<10:
 print(i)
 i += 1

Show hidden output

break, continue

i = 0

while i<10:
 if i==4:
 break
 else:
 print(i)
 i += 1

0
1
2
3

i = 0

while i<10:
 if i%2==0:
 i += 1
 continue
 else:
 print(i)
 i += 1

1
3
5
7
9

1/26/23, 5:24 PM 3_if condition.ipynb - Colaboratory

https://colab.research.google.com/drive/1kXj5NUi85FCLkthXZ1kML77ujtJ35PRL#scrollTo=ad219592&printMode=true 1/3

Conditional Statement

a = 1
b = 2
c = b-a

a is c

True

a == c

True

id(a)

140031922116912

id(c)

140031922116912

list1 = [1,2,3]
list2 = [1,2,3]
list3 = list1

list1 is list2

False

list1 is list3

True

list1 == list2

True

1 in list1

True

4 in list1

False

syntax
if condition:
 # statement

arrive_time = float(input("enter the arriving time : "))

if arrive_time > 10:
 food = "order"

else:
 food = "cook"

print(f"{food} your food")

enter the arriving time : 10
cook your food

if elif else statement

x = 2.5

if x>0:
 print(f"{x} is a positive number")

1/26/23, 5:24 PM 3_if condition.ipynb - Colaboratory

https://colab.research.google.com/drive/1kXj5NUi85FCLkthXZ1kML77ujtJ35PRL#scrollTo=ad219592&printMode=true 2/3

elif x==0:
 print(f"{x} is equal to zero")
else:
 print(f"{x} is a negative number")

2.5 is a positive number

nested if statement

x = "-25"

if type(x)==int or type(x)==float:
 if x>0:
 print(f"{x} is a positive number")
 elif x==0:
 print(f"{x} is equal to zero")
 else:
 print(f"{x} is a negative number")
else:
 print("only integer and float numbers are accepted as input")

only integer and float numbers are accepted as input

x = "hello"
type(x)

str

type(25)==int

True

1/26/23, 5:24 PM 3_if condition.ipynb - Colaboratory

https://colab.research.google.com/drive/1kXj5NUi85FCLkthXZ1kML77ujtJ35PRL#scrollTo=ad219592&printMode=true 3/3

For More Details

https://data-flair.training/blogs/python-operator/

https://data-flair.training/blogs/python-operator/

Thank You

