SCIENTIFIC COMPUTING WITH
PYTHON

Operators

Course Coordinator: Dr. R. Mariyal Jebasty
Assistant Professor,
Department of Physics
Wavoo Wajeeha College of Arts & Science
Kayalpatnam.

Course Instructors

1. Mrs. Pushpa, Assistant Professor in Physics, Wavoo Wajeeha
Women'’s College of Arts & Science, Kayalpatnam.

2. Dr. S. Usharani, Assistant Professorin Physics, Wavoo
Wajeeha Women'’s College of Arts & Science, Kayalpatnam.

Operators

Task Symbol
e What are

Operators? Addition +

. , Subtraction -
e Symbols that represent mathematical or logical tasks.

Multiplication *

3t95 Division /

VAN

[Operands J [Operator J

Different Types of Operators

Relational Assignment
Operators Operators

Different Types of Operators

Arithmetic Operators

Addition + e Y Python Arithmetic Operator

Subtraction —

Floor
Addition(+) Division(//)

Multiplication *

Division /

e | R
, £**)

Modulo %

Multiplication(*) Modulus(%)
Floor division //

Exponent **

Different Types of Operators

Arithmetic Operators

Addition > 3+5+6

Addition +

Subtraction > |6-4-2|=

Subtraction —
Multiplication *
Division /
Modulo %
Floor division //

Exponent **

Different Types of Operators

Arithmetic Operators

Addition -> 3+5+6 =14
Addition + _
Subtraction -> [6-4-2|=0
Subtraction — S
Multiplication-> [3*5*6 | =90
Multiplication * o
Division -> | 5/3 =1.67

Division /
Modulo %
Floor division //

Exponent **

Different Types of Operators

Arithmetic Operators

Addition ->3+5+6/ =14

Addition +

Subtraction ->(6-4-2|=0

Subtraction —

Multiplication ->3*5*6 | =90

Multiplication *

Division > 5/3 =1.67
Division /

Modulo > 5003 (=2
Modulo %

Floor > 5//3 |=1
Floor division // Division

Exponent **

Different Types of Operators

Arithmetic Operators

Addition ->3+5+6/ =14

Addition +

Subtraction ->(6-4-2|=0

Subtraction —

Multiplication ->3*5*6 | =90

Multiplication *

Division > 5/3 = 1.67
Division /

Modulo > 5003 (=2
Modulo %

Floor > 5//3 |=1
Floor division // Division

Exponent > 5*»*3 |=125

Exponent **

Different Types of Operators

Relational Operators
Less than <

Less than or Equal to <=

Equal to ==

Greater than >
Greater than or equal to >=

Not equal to !=

Different Types of Operators

Less than ->| X<y [->7?

Relational Operators
Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Different Types of Operators

Less than ->x <y |->True!

Relational Operators
Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Different Types of Operators

Relational Operators
Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Less than ->

X <y

17

Different Types of Operators

Relational Operators
Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Less than ->

X <y

-> False

17

Different Types of Operators

Relational Operators
Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Less than -> x <y
Less than or equal to ->

Equal to -> x ==y

17

X <=y

Different Types of Operators

Relational Operators
Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Less than -> x <y

Less than or equal to ->x <=y

Equal to -> x ==

Greater than -> x>y

17

Greater than or equal to ->

X <=y

Not Equalto -3 x 1=y

Different Types of Operators

Logical Operators

e and

e Or

Different Types of Operators

and -> True only if both comparisons are
True.

Logical Operators

e and

e Or

Different Types of Operators

and -> True only if both comparisons are
True.
x<bandy>8-->7?

Logical Operators

e and

e Or

Different Types of Operators

and -> True only if both comparisons are
True.
Xx<5andy > 8 --> True and False

Logical Operators

and

or

Different Types of Operators

and -> True only if both comparisons are
True.
x<5andy> 8 -->True and False --> False

Logical Operators

and

or

Different Types of Operators

and -> True only if both comparisons are

True.
x<5andy> 8 -->True and False --> False

Logical Operators

and

or -> True if either of the comparisons are True.
or

X<5ory>8 -->True or False

Different Types of Operators

and -> True only if both comparisons are

True.
x<5andy> 8 -->True and False --> False

Logical Operators

and

or -> True if either of the comparisons are True.
or

X<5ory>8 --> True or False -->True

Different Types of Operators

and -> True only if both comparisons are
True.
x<5andy> 8 -->True and False --> False

Logical Operators

and

or -> True if either of the comparisons are True.
or

X<5ory>8 --> True or False -->True

not -> True if comparison is False and vice-versa.

not X < 5 +-> not True

Different Types of Operators

and -> True only if both comparisons are
True.
x<5andy> 8 -->True and False --> False

Logical Operators

and

or -> True if either of the comparisons are True.
or

X<5ory>8 --> True or False -->True

not -> True if comparison is False and vice-versa.

not x < 5 +-> not True --> False

Arithmetic Operators

Addition +
Subtraction —
Multiplication *
Division /
Modulo %
Floor division /

Exponent **

Summary

Relational Operators

Less than <

Less than or Equal to <=
Equal to ==

Greater than >

Greater than or equal to >=

Not equal to !=

Logical Operators

and

or

Python Assighment Operator

Multiply

and
Assign(*=)

i/

i/

Add and
Assign(+=)

Modulus
and
Assign(%=)

\

Subtract Divide

and and
Assign(-=) Assign(/=)

Exponent Floor-Divide
and and
Assign(**=) Assign(//=)

Python Identity Operator

* is Operator in Python
* is not Operator in Python

Python Membership Operator

e operators test whether a value is a member of a sequence. The
sequence may be a list, a string, or a tuple.

* We have two membership python operators- ‘in” and ‘not in’.

Python Bitwise Operator

Binary AND(&)

Binary One’s
Complement(~)

Binary Left-Shift(<<)

Binary OR(|)

Binary XOR(A) Binary Right-Shift(>>)

Example

i/p:1&3
o/p: 2
It perform Bit by bit AND operation

Here, binary for 1 is 01, and that for 3 is 11. &-ing them results
in 01, which is binary for 1.

Looping Statements

Scenario

e Print “Python is awesome” 1000 times

b

print(“Python is awesome print("Python is awesome”)

1 b

print(“Python is awesome print(“Python is awesome”)

1 ”

‘Python is awesome

print("Python is awesome

(
(
print(
(
(

”

print("Python is awesome

)
)
)
‘)
)
)

”

print(“Python is awesome

print("Python is awesome”)

Scenario

e Print “Python is awesome” 1000 times

]

print(“Python is awesome print("Python is awesome”)

1]

print(“Python is awesome print(“Python is awesome”)

1 ”

Python Is awesome”) | | gooping Statements!! |-

print("Python is awesome

(
(
print(
(
(

”

print("Python is awesome

)
)
)
‘)
)
)

”

print(“Python is awesome

print("Python is awesome”)

Looping constructs in Python

e Print “Python is awesome” 1000 times

Pseudo-Code:

Looping constructs in Python

e Print “Python is awesome” 1000 times

Pseudo-Code:

print “Python is awesome” (repeat 1000 times)

Looping constructs in Python

e Print “Python is awesome” 1000 times

Pseudo-Code: Code

print “Python is awesome” (repeat 1000 times) for i in range(1000):

print(“Python is awesome”)

Looping constructs in Python: The for loop

e The ‘for’loop in python

Pseudo-Code: Syntax:

print “Python is awesome” (repeat 1000 times) for iterating_variable in sequence:

statements(s)

Looping constructs in Python: The for loop

e The ‘for’loop in python

Pseudo-Code: Syntax:
print “Python is awesome” (repeat 1000 times) for iterating_variable in sequence:
.statements(s)
4 space
“indentation”

Looping constructs in Python: The for loop

e The ‘for’loop in python

Pseudo-Code: Code

print “Python is awesome” (repeat 1000 times) for i in range(1000):

print(“Python is awesome”)

Looping constructs in Python: The for loop

e The ‘for’loop in python

Pseudo-Code: Code

print “Python is awesome” (repeat 1000 times) foriin range(lOOO):D

.print(“Python is awesome”)

|

4 space
“indentation”

Looping constructs in Python: The for loop

e The ‘for’loop in python

“stop condition”
Pseudo-Code: / m

print “Python is awesome” (repeat @imes) for i in range(OOO):D

.print(“Python is awesome”)

|

4 space
“indentation”

Types of loops: Example

Types of loops: Example

Scenario #1:

Pass in 5 subjects:

e Math
e Physics
e English..etc.

Types of loops: Example

Scenario #1:

Pass in 5 subjects:

Code:
o M;'];lth. for subject in range(5):
e Physics # Pass exam 5 times

e English..etc. # Once for each subject

Types of loops: Example

Scenario #1.:
“stop condition”

Code:

v

for subject in rang @
Pass exam 5 times

Once for each subject

e Math
e Physics
e English..etc.

Types of loops: Example

Scenario #2:

e Secure at least an A gradein é&
Math to pass. %
E.

Types of loops: Example

Scenario #2:

e Secure atleastan A gradein

Math to pass.

e When do you stop?

Types of loops: Example

Scenario #2:
e Secure at least an A gradein 45;
A
Math to pass. ‘\ %
/
e When do you stop? \ —

=

///

e Keep trying until you succeed!

e New kind of looping needed..

Types of loops: Example

Scenario #2:

e Secure atleastan A gradein
Code:

Math to pass.

while grade != ‘A
Keep repeating until
comparison gives a False

e \When do you stop?

e Keep trying until you succeed!

e New kind of looping needed..

Types of loops: Example

Scenario #2:

e Secure atleast an A gradein comparison (“stopping criteria’)

Code:
g

while grade != ‘A
Keep repeating until
comparison gives a False

Math to pass.

e \When do you stop?

e Keep trying until you succeed!

e New kind of looping needed..

Looping constructs in Python: The while loop

e The ‘while’loop in

python
Code:
Syntax:
while comparison: while grade = ‘A’
tat i # Keep repeating until
statements(s) # comparison gives a False

Looping constructs in Python: Summary

‘for’loop

Code:

for subject in range(5):
Pass exam 5 times
Once for each subject

‘while’loop

Code:

while grade != ‘A
Keep repeating until
comparison gives a False

Conditional Statements

Conditional Statements: Scenario

Example

Conditional Statements: Scenario

Arrive Home

Example

On-time Late (After 10 PM)

Conditional Statements

On-time Late (After 10 PM)

Arrive Home

Conditional Statements

On-time

—>

Late (After 10 PM)

arrive_time > 10

Arrive Home

Conditional Statements

variable

On-time

—>

Late (After 10 PM)

arrive_time > 10

food = “cook”

Arrive Home

Conditional Statements

variable

On-time

—>

Late (After 10 PM)

compfrison

arrive_time >

10

food = “cook”

Arrive Home

Conditional Statements

variable

On-time

—>

Late (After 10 PM)

compfrison

arrive_time > 10

True

Arrive Home

Conditional Statements

variable

On-time

—>

Late (After 10 PM)

compfrison

arrive_time >

10

False

food = “cook”

True

Pseudo-Code

Conditional Statements

False

True

Pseudo-Code

Conditional Statements

Check if arrive_time > 10

arrive_time > 10

False

True

Pseudo-Code

Conditional Statements

Check if arrive_time > 10

then food = “order”

arrive_time > 10

False

True

food = “order”

Pseudo-Code

Conditional Statements

Check if arrive_time > 10
then food = “order”

else food = “cook”

arrive_time > 10

False

True

Conditional Statements

Pseudo-Code Code

Check if arrive_time > 10
then food = “order”

else food = “cook”

Conditional Statements

Pseudo-Code Code

Check if arrive_time > 10 if arrive_time >10:

food = “order”
then food = “order” else:
food = “cook”

else food = “cook”

Conditional Statements

PseWe/ \Cod-e\

/ X)
Check iffarrive_time > 10 arrive_time >1@
food = “order”
then food = “order” else:
food = “cook”

else food = “cook”

Conditional Statements

Pseudo-Code Code

Check if arrive_time > 10 if arrive_time >10:

Bfood = “order”
then food = “order” else:
Bfood = “cook”

else food = “cook 4 space

“indentation”

Pseudo-Code

Conditional Statements

then food = “order”

else food = “cook”

Code

food = “order”
else:

food = “cook”

Conditional Statements

Pseudo-Code Code
Check if arrive_time > 10 if arrive_time >10:
else:
food = “cook”
else food = “cook”

Conditional Statements

Pseudo-Code Code
Check if arrive_time > 10 if arrive_time >10:
food = “order”

then food = “order”

Conditional Statements: The if statement

e If — else statements : Single Condition

Pseudo-Code

Syntax

Check if arrive_time > 10
then food = “order”

else food = “cook”

if condition:
statement 1

else:
statement 2

Conditional Statements: Multiple conditions

e If — elif — else statements . Multiple Conditions

Conditional Statements: Multiple conditions

e If — elif — else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to O or “negative” if x is less
than O.

Conditional Statements: Multiple conditions

e If — elif — else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to O or “negative” if x is less
than O.

Pseudo-Code

Check if x>0
if yes then print(“positive”)

Otherwise check if x==
if yes then print(“zero”)

For every other situation just print(“negative”)

Conditional Statements: Multiple conditions

e If — elif — else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to O or “negative” if x is less

than O.

Pseudo-Code Code

Check if x>0 if x>0:

if yes then print(“positive”) print(“positive”)
elif x==0:

Otherwise check if x== print("zero”)

if yes then print(“zero”) else:

print(“negative”)
For every other situation just print(“negative”)

Conditional Statements: Multiple conditions

e If — elif — else statements : Multiple Conditions

Example:

Assume a variable x, print “positive” if x is greater than 0, “zero” if x is equal to O or “negative” if x is less

than O.

Pseudo-Code Code

Check if x>0 if x>0:

if yes then print(“positive”) print(“positive”)

else:
print(“negative”)

For every other situation just print(“negative”)

Conditional Statements: The if-elif-else

e If — elif — else statements . Multiple Conditions

Pseudo-Code

Check if x>0
if yes then print(“positive”)

Otherwise check if x==
if yes then print(“zero”)

For every other situation just print(“negative”)

Syntax

If conditionl:
statement 1

elif
condition?2:
statement 2

else:
statement 3

Conditional Statements: Multiple elifs

e If — elif — else statements . Multiple Conditions

Syntax

if condition1:
statement 1

elif condition2:
statement 2

elif condition99:
statement 99
else:
statement 100

1/25/23, 3:36 PM

Looping Statements

for i in range(10):
print(i)

print("hello")
print("world")

print("hello",end=" ")
print("world")

print("hello",end="*")
print("world",end="*")
print("to all...")

help(range)
range(10)

for i in range(10,100):
print(i, end=" ")

for i in range(100,10,-5):
print(i, end=" ")

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15

mark_list = [95, 90, 85, 80, 75]

for mark in mark_list:
if mark > 80:
print("pass")
else:
print("fail")

pass
pass
pass
fail
fail

subject = ['maths', 'science', 'social', ‘'english', 'tamil']
mark_list = [95, 90, 85, 80, 75]

for i in range(5):
if mark_list[i] > 8@:
print(subject[i], mark_list[i]," - pass")
else:
print(subject[i], mark_list[i]," - fail")

maths 95 - pass
science 90 - pass
social 85 - pass
english 80 - fail
tamil 75 - fail

for i in range(2,5):
for j in range(1,5):
print(i,J)

Show hidden output

number = int(input(“"enter a number"))
string = "Nielit Chennai”

for i in range(len(string)):

print(i)

Show hidden output

https://colab.research.google.com/drive/1s6rbmx0AHrGhcpu87hAg0BgQaqgfHHiYh#scroll To=vTKV-_QxY-a5&printMode=true

7_Looping statement.ipynb - Colaboratory

12

1/25/23, 3:36 PM

for i in string:
print(i)

Show hidden output

i=90

while i<1@:
print(i)
i+=1

Show hidden output

break, continue

i=0

while i<1@:
if i==4:
break
else:
print(i)
i+=1

wNR o

i=0

while i<1@:
if i%2==0:
i+=1
continue
else:
print(i)
i+=1

O N VT W

7_Looping statement.ipynb - Colaboratory

https://colab.research.google.com/drive/1s6rbmx0AHrGhcpu87hAg0BgQaqgfHHiYh#scroll To=vTKV-_QxY-a5&printMode=true

2/2

1/26/23, 5:24 PM 3_if condition.ipynb - Colaboratory

Conditional Statement

o
n
o N P

True

True

id(a)

140031922116912

id(c)

140031922116912

listl = [1,2,3]
list2 = [1,2,3]
list3 = listl

listl is list2

False

listl is list3

True

listl == list2

True

1 in list1l

True

4 in listl

False

syntax
if condition:
statement

arrive_time = float(input("enter the arriving time : "))

if arrive_time > 10:
food = "order"

else:
food = "cook"

print(f"{food} your food")

enter the arriving time : 10
cook your food

~ if elif else statement

if x>e:
print(f"{x} is a positive number")

https://colab.research.google.com/drive/1kXj5NUi85F CLkthXZ1kML77ujtJ35PRL#scrollTo=ad219592&printMode=true 1/3

1/26/23, 5:24 PM 3_if condition.ipynb - Colaboratory

elif x==0:

print(f"{x} is equal to zero")
else:

print(f"{x} is a negative number")

2.5 is a positive number

~ nested if statement

x = "-25"

if type(x)==int or type(x)==float:
if x>0:
print(f"{x} is a positive number")
elif x==0:
print(f"{x} is equal to zero")
else:
print(f"{x} is a negative number")
else:
print("only integer and float numbers are accepted as input")

only integer and float numbers are accepted as input

x = "hello"
type(x)
str

type(25)==int

True

https://colab.research.google.com/drive/1kXj5NUi85F CLkthXZ1kML77ujtJ35PRL#scrollTo=ad219592&printMode=true 2/3

1/26/23, 5:24 PM 3_if condition.ipynb - Colaboratory

https://colab.research.google.com/drive/1kXj5NUi85F CLkthXZ1kML77ujtJ35PRL#scrollTo=ad219592&printMode=true 3/3

For More Details

https://data-flair.training/blogs/python-operator/

https://data-flair.training/blogs/python-operator/

Thank You

