SCIENTIFIC COMPUTING WITH
PYTHON

Object Oriented Programming Concepts

Course Coordinator: Dr. R. Mariyal Jebasty
Assistant Professor,
Department of Physics
Wavoo Wajeeha College of Arts & Science
Kayalpatnam.

Course Instructors

1. Mrs. Pushpa, Assistant Professor in Physics, Wavoo Wajeeha
Women'’s College of Arts & Science, Kayalpatnam.

2. Dr. S. Usharani, Assistant Professorin Physics, Wavoo
Wajeeha Women'’s College of Arts & Science, Kayalpatnam.

Concept of 00P

CLASS
0BJECT

When you define a class, you define a blueprint for an
object. This doesn't actually define any data, but it
does define what the class name means, that is,

what an object of the class will consist of and what
operations can be performed on such an object.

This is the basic unit of object-oriented programming.
That is both data and function that operate on data
are bundled as a unit called an object.

Encapsulation

ENCAPSULATION

Encapsulation is a process of binding data members

(variables, properties) and member functions
(methods) into a single unit. It is also a way of it can have several departments

restricting access to certain properties or component. Production Department

The best example for encapsulation is a class. HR Department
Marketing Department

a company

all these departments make up a company

ABSTRACTION

It refers to, providing only essential information to the
outside world and hiding their background details.

For example, a web server hides how it processes
data it receives, the end user just hits the endpoints
and gets the data back.

Abstraction

a mobile phone

you can do many things like
make a call
take pictures
play games

it doesnt show you the inside process of
how its doing the things
The implementation parts are hidden

INHERITANGE

The ability to create a new class from an existing class is
called Inheritance. Using inheritance, we can create a
Child class from a Parent class such that it inherits the
properties and methods of the parent class and can
have its own additional properties and methods.

Inheritance

dogs

they can have same colour
same name
same size

but they are not the same dog

POLYMORPHISM

The word polymorphism means having many forms.

Typically, polymorphism occurs when there is a
hierarchy of classes and they are related by
inheritance. C++ polymorphism means that a
call to a member function will cause a different
function to be executed depending on the type
of object that invokes the function.

Polymorphism

a girl

she can be many things
mother
writer
student

a same person can have different roles

How to Use OOP

i-

J

i
L

has:

does:

is_holding_plate = True
tables_responsible = [4, 5, 6]

does:

is_holding_plate =

ﬂA

has: .
tables_responsible = [4, 5, 6]
jef take_order(table, order):

does: #takes order to chef

take_payment (amount):
#add money to restaurant

. A
is_holding_plate =
attributes:

tables_responsible = [4, 5, 6]

- take _order(table, order):
methods: #takes order to chef

- take_payment (amount):
#add money to restaurant

V-
u

~_

)
J

Waiter

Constructing Objects

car = CarBlueprint()

car = CarBlueprint()

car = CarBlueprint()

speed = 0
fuel = 32

attributes:

car.speed

car.speed

Object Methods

speed = 0
fuel = 32

has:

does:

speed = 0
fuel = 32

attributes:

methods:

car.stop()

car.stop()

For More Details

O https://data-flair.training /blogs/python-object/

O https://data-flair.training/blogs/python-inheritance/

https://data-flair.training/blogs/python-object/
https://data-flair.training/blogs/python-inheritance/

1/26/23, 5:32 PM 20_Object Oriented Programming.ipynb - Colaboratory

Object Oreiented Programming Concept

class Point:
def draw(self):
print("draw")

point = Point()
print(type(point))
print(isinstance(point, Point))

<class '__main__.Point'>
True

-~ Constructor

default constructor / non parameterized constructor
class Student:
id_no = 10 # class variables
name = 'studl’
def __init_ (self):
print("init method called by default")
stud = Student()

init method called by default

stud.id_no

10

Student.id_no

10

parameterized constructor
class Person:
def __init_ (self, name, age):
self.name = name # instance variable

self.age = age

def myfun(self):
print(f"Hello my name is {self.name} and I am {self.age} years old")

pl = Person('Jack', 20)
print(pl.name)
print(pl.age)
pl.myfun()

Jack

20
Hello my name is Jack and I am 20 years old

class MulConst:
def __init_ (self):
print("This is first constructor™)
def __init_ (self):
print("This is second constructor")

pl = MulConst()

This is second constructor

Student.id_no = 20

https://colab.research.google.com/drive/1kgLv_9LZ0E0sSSIh9xREg-6/\WQkclklw#scrollTo=9c02567d&printMode=true 113

1/26/23, 5:32 PM 20_Object Oriented Programming.ipynb - Colaboratory

obj = Student()

init method called by default

obj.id_no

20

magic method
class Point:

def __init_ (self, x,y):
self.x = x
self.y =y

def __str__ (self):
return (f"__str__ magic function")

def draw(self):
print(f"Point ({self.x}, {self.y})")

point = Point(3,9)
print(point.__str_ ())
print(str(point))

__str__ magic function

point.draw()

Point (3, 9)

comparision magic methods
class Point:

def __init_ (self, x,y):
self.x = x
self.y =y

def __eq_ (self,other):
return self.x == other.x and self.y == other.y

def __1t_ (self, other):
return self.x < other.x and self.y < other.y

point = Point(3,9)
another_point = Point(13,19)

print(point == another_point)
print(point < another_point)

True

numeric magic method
class Point:

def __init_ (self, x,y):
self.x = x
self.y =y

def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)

def __sub__(self, other):
return Point(self.x - other.x, self.y - other.y)

point = Point(3,9)
another_point = Point(13,19)

comp_add = point + another_point
print(comp_add.x, comp_add.y)

comp_sub = point - another_point
print(comp_sub.x, comp_sub.y)

16 28
-10 -10

https://colab.research.google.com/drive/1kgLv_9LZ0E0sSSIh9xREg-6/\WQkclklw#scrollTo=9c02567d&printMode=true

2/3

1/26/23, 5:32 PM 20_Object Oriented Programming.ipynb - Colaboratory

delete a object property

del point.y

another_point.y

19

del another_point

©® 0s completed at 5:32PM ® X

https://colab.research.google.com/drive/1kgLv_9LZ0E0sSSIh9xREg-6/\WQkclklw#scrollTo=9c02567d&printMode=true 3/3

