
SCIENTIFIC COMPUTING WITH

PYTHON

Data Visualization

Course Coordinator: Dr. R. Mariyal Jebasty
Assistant Professor,
Department of Physics
Wavoo Wajeeha College of Arts & Science
Kayalpatnam.

Course Instructors

1. Mrs. Pushpa, Assistant Professor in Physics, Wavoo Wajeeha
Women’s College of Arts & Science, Kayalpatnam.
2. Dr. S. Usharani , Assistant Professor in Physics, Wavoo
Wajeeha Women’s College of Arts & Science, Kayalpatnam.

DATA
VISUALIZATION
USING PYTHON

About Matplotlib

• Matplotlib is the most popular python library for plotting different kinds of graphs.
• The Pyplot module inside the Matplotlib makes it work like Matlab.

Importing Matplotlib
• To import matplotlib.pyplot, type ‘import matplotlib.pyplot’ in Jupyter Notebook and

run the cell.
• The common abbreviation used for matplotlib.pyplot is plt.

Plotting Line Plots (1/2)

• We can plot line plots using matplotlib using the .plot() function.
• The first argument in the .plot() function specifies the x-axis.
• The second argument in the .plot() function specifies the y-axis.

Plotting Line Plots (2/2)

 ChangingColor

• We can also change the color of the line by providing the color as third argument in the

 plot() function.

• A list of the color abbreviations can be found at:
https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.html

https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.html

Title
• To set the title of the plot, use the .title() function.

Labels

• To assign labels to x and y-axis, use .xlabel() and .ylabel() respectively.

Legend (1/2)

• We can plot multiple plots on the same chart simply by plotting them one by one as in
the given example.

Legend (2/2)

• If plotting more than one plots, it is a good idea to add a legend in your figure using the
.legend() function.

Plotting Histograms (1/3)

• We can also plot histograms using .hist() function.
• A histogram is generally used to plot frequency which helps identify distribution of

data.

Plotting Histograms (2/3)
Changing Color

• We can also change color of the bars using the ‘color’ parameter inside the hist()
function.

Plotting Histograms (3/3)

Changing Width

• We can also change width of the bars using the ‘width’ parameter inside the hist()
function.

Plotting Bar Charts (1/2)
• To plot a bar graph, use the .bar() function of the matplotlib.pyplot.

• First argument in the bar() function is the x-label.
• Second argument in the bar() function is the height of each bar, which can be a list

of values or a single value.

Plotting Bar Charts (2/2)
Changing Width

• We can also change the width of bars in the bar plot using the ‘width’ parameter.

Plotting Pie Charts (1/4)
• .pie() function is used to create a pie chart in matplotlib.pyplot.

Plotting Pie Charts (2/4)
Labels

• To add labels in your pie chart, use the ‘labels’ parameter which takes a list of labels.

Plotting Pie Charts (3/4)
Explode

• If you want one or more wedges of your pie chart to stand out, you can use the
‘explode’ parameter.
• Provide a list containing distance of each wedge from the center to the ‘explode’

parameter.

Plotting Pie Charts (4/4)
Colors

• We can also change the colors of wedges by providing a list of colors to the ‘colors’
parameter.

Plotting Scatter Plot (1/5)
• We can also plot scatter plots using the .scatter() function inside matplotlib.pyplot.
• It takes two lists as arguments;

• First list specifies the values for the x-axis
• Second list specifies the values for the y-axis

Plotting Scatter Plot (2/5)
Colors

• We can also change color of the dots using the ‘color’ parameter.

Plotting Scatter Plot (3/5)

Colormap

• If you would like to give each dot a different color, you can provide a list of colors or
integers to the ‘c’ parameter.

Plotting Scatter Plot (4/5)
Colormap

• You can also set the colormap using the ‘cmap’ parameter.
• For this, you will need to provide a list of integers that will be mapped to colors.
• We have used ‘Accent’ colormap, which is one of the many built-in colormaps in

matplotlib.

Plotting Scatter Plot (5/5)
Colormap

• To see the available colormaps in matplotlib, import ‘cm’ module from matplotlib.
• Give the ‘dir(cm)’ command and run the cell.
• A list of all the available colormaps will be displayed.

Handling Dates (1/2)

• Sometimes, there are too many values on the x-axis and it becomes difficult to
distinguish them in the graph.

• This also happens when you have dates on the x-axis and they overlap as shown in the
figure.

Handling Dates (2/2)
• We can avoid this by changing the orientation of the values on the x-axis using the

.xticks() function.
• .xticks() has a rotation parameter which can be used to rotate the values on the x-

axis by a suitable angle.

Creating Multiple Subplots in One Figure (1/3)
• We saw how we can plot multiple plots on the same chart, but sometimes we would

like to have different charts for each plot.
• What we want to have actually is multiple subplots in the same figure, as shown in the

given figure.

Creating Multiple Subplots in One Figure (2/3)
• To create subplots, we use the .subplot() function before plotting each graph.
• .subplot() takes 3 parameters;

• First parameter is the number of rows you want to have in your figure.
• Second parameter is the number of columns you want to have in your figure.
• Third parameter is the id/position of the plot in the figure.

Creating Multiple Subplots in One Figure (3/3)

• We can have separate x and y labels as well as title for each subplot in the figure.

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 1/9

A common use for notebooks is data visualization using charts. Colaboratory makes this easy with several charting tools available as Python
imports.

Charting in Colaboratory

Matplotlib is the most common charting package, see its documentation for details, and its examples for inspiration.

Matplotlib

Line Plots

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
y1 = [1, 3, 5, 3, 1, 3, 5, 3, 1]
y2 = [2, 4, 6, 4, 2, 4, 6, 4, 2]
plt.plot(x, y1, label="line L")
plt.plot(x, y2, label="line H")
plt.plot()

plt.xlabel("x axis")
plt.ylabel("y axis")
plt.title("Line Graph Example")
plt.legend()
plt.show()

Bar Plots

import matplotlib.pyplot as plt

Look at index 4 and 6, which demonstrate overlapping cases.
x1 = [1, 3, 4, 5, 6, 7, 9]
y1 = [4, 7, 2, 4, 7, 8, 3]

x2 = [2, 4, 6, 8, 10]
y2 = [5, 6, 2, 6, 2]

Colors: https://matplotlib.org/api/colors_api.html

plt.bar(x1, y1, label="Blue Bar", color='b')
plt.bar(x2, y2, label="Green Bar", color='g')
plt.plot()

plt.xlabel("bar number")
plt.ylabel("bar height")
plt.title("Bar Chart Example")
plt.legend()
plt.show()

http://matplotlib.org/
http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/gallery.html#statistics

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 2/9

Histograms

import matplotlib.pyplot as plt
import numpy as np

Use numpy to generate a bunch of random data in a bell curve around 5.
n = 5 + np.random.randn(1000)

m = [m for m in range(len(n))]
plt.bar(m, n)
plt.title("Raw Data")
plt.show()

plt.hist(n, bins=20)
plt.title("Histogram")
plt.show()

plt.hist(n, cumulative=True, bins=20)
plt.title("Cumulative Histogram")
plt.show()

Scatter Plots

import matplotlib.pyplot as plt

x1 = [2, 3, 4]
y1 = [5, 5, 5]

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 3/9

x2 = [1, 2, 3, 4, 5]
y2 = [2, 3, 2, 3, 4]
y3 = [6, 8, 7, 8, 7]

Markers: https://matplotlib.org/api/markers_api.html

plt.scatter(x1, y1)
plt.scatter(x2, y2, marker='v', color='r')
plt.scatter(x2, y3, marker='^', color='m')
plt.title('Scatter Plot Example')
plt.show()

Stack Plots

import matplotlib.pyplot as plt

idxes = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr1 = [23, 40, 28, 43, 8, 44, 43, 18, 17]
arr2 = [17, 30, 22, 14, 17, 17, 29, 22, 30]
arr3 = [15, 31, 18, 22, 18, 19, 13, 32, 39]

Adding legend for stack plots is tricky.
plt.plot([], [], color='r', label = 'D 1')
plt.plot([], [], color='g', label = 'D 2')
plt.plot([], [], color='b', label = 'D 3')

plt.stackplot(idxes, arr1, arr2, arr3, colors= ['r', 'g', 'b'])
plt.title('Stack Plot Example')
plt.legend()
plt.show()

Pie Charts

import matplotlib.pyplot as plt

labels = 'S1', 'S2', 'S3'
sections = [56, 66, 24]
colors = ['c', 'g', 'y']

plt.pie(sections, labels=labels, colors=colors,
 startangle=90,
 explode = (0, 0.1, 0),
 autopct = '%1.2f%%')

plt.axis('equal') # Try commenting this out.
plt.title('Pie Chart Example')
plt.show()

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 4/9

fill_between and alpha

import matplotlib.pyplot as plt
import numpy as np

ys = 200 + np.random.randn(100)
x = [x for x in range(len(ys))]

plt.plot(x, ys, '-')
plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6)

plt.title("Fills and Alpha Example")
plt.show()

Subplotting using Subplot2grid

import matplotlib.pyplot as plt
import numpy as np

def random_plots():
 xs = []
 ys = []

 for i in range(20):
 x = i
 y = np.random.randint(10)

 xs.append(x)
 ys.append(y)

 return xs, ys

fig = plt.figure()
ax1 = plt.subplot2grid((5, 2), (0, 0), rowspan=1, colspan=2)
ax2 = plt.subplot2grid((5, 2), (1, 0), rowspan=3, colspan=2)
ax3 = plt.subplot2grid((5, 2), (4, 0), rowspan=1, colspan=1)
ax4 = plt.subplot2grid((5, 2), (4, 1), rowspan=1, colspan=1)

x, y = random_plots()
ax1.plot(x, y)

x, y = random_plots()
ax2.plot(x, y)

x, y = random_plots()
ax3.plot(x, y)

x, y = random_plots()
ax4.plot(x, y)

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 5/9

plt.tight_layout()
plt.show()

Colaboratory charts use Seaborn's custom styling by default. To customize styling further please see the matplotlib docs.

Plot styles

3D Graphs

3D Scatter Plots

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import axes3d

fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')

x1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y1 = np.random.randint(10, size=10)
z1 = np.random.randint(10, size=10)

x2 = [-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]
y2 = np.random.randint(-10, 0, size=10)
z2 = np.random.randint(10, size=10)

ax.scatter(x1, y1, z1, c='b', marker='o', label='blue')
ax.scatter(x2, y2, z2, c='g', marker='D', label='green')

ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
plt.title("3D Scatter Plot Example")
plt.legend()
plt.tight_layout()
plt.show()

3D Bar Plots

import matplotlib.pyplot as plt
import numpy as np

https://seaborn.pydata.org/
https://matplotlib.org/users/style_sheets.html

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 6/9

fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = np.random.randint(10, size=10)
z = np.zeros(10)

dx = np.ones(10)
dy = np.ones(10)
dz = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

ax.bar3d(x, y, z, dx, dy, dz, color='g')

ax.set_xlabel('x axis')
ax.set_ylabel('y axis')
ax.set_zlabel('z axis')
plt.title("3D Bar Chart Example")
plt.tight_layout()
plt.show()

Wireframe Plots

import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d')

x, y, z = axes3d.get_test_data()

ax.plot_wireframe(x, y, z, rstride = 2, cstride = 2)

plt.title("Wireframe Plot Example")
plt.tight_layout()
plt.show()

There are several libraries layered on top of Matplotlib that you can use in Colab. One that is worth highlighting is Seaborn:

Seaborn

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

Generate some random data
num_points = 20
x will be 5, 6, 7... but also twiddled randomly
x = 5 + np.arange(num_points) + np.random.randn(num_points)

http://seaborn.pydata.org/

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 7/9

y will be 10, 11, 12... but twiddled even more randomly
y = 10 + np.arange(num_points) + 5 * np.random.randn(num_points)
sns.regplot(x, y)
plt.show()

That's a simple scatterplot with a nice regression line fit to it, all with just one call to Seaborn's regplot.

Here's a Seaborn heatmap:

import matplotlib.pyplot as plt
import numpy as np

Make a 10 x 10 heatmap of some random data
side_length = 10
Start with a 10 x 10 matrix with values randomized around 5
data = 5 + np.random.randn(side_length, side_length)
The next two lines make the values larger as we get closer to (9, 9)
data += np.arange(side_length)
data += np.reshape(np.arange(side_length), (side_length, 1))
Generate the heatmap
sns.heatmap(data)
plt.show()

Altair

Altair is a declarative visualization library for creating interactive visualizations in Python, and is installed and enabled in Colab by default.

For example, here is an interactive scatter plot:

import altair as alt
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
 x='Horsepower',
 y='Miles_per_Gallon',
 color='Origin',
).interactive()

http://seaborn.pydata.org/generated/seaborn.regplot.html#seaborn.regplot
https://seaborn.pydata.org/generated/seaborn.heatmap.html
http://altair-viz.github.io/

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 8/9

For more examples of Altair plots, see the Altair snippets notebook or the external Altair Example Gallery.

Plotly

Sample

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4

8

12

16

from plotly.offline import iplot
import plotly.graph_objs as go

data = [
 go.Contour(
 z=[[10, 10.625, 12.5, 15.625, 20],
 [5.625, 6.25, 8.125, 11.25, 15.625],
 [2.5, 3.125, 5., 8.125, 12.5],
 [0.625, 1.25, 3.125, 6.25, 10.625],
 [0, 0.625, 2.5, 5.625, 10]]
)
]
iplot(data)

Bokeh

Sample

import numpy as np
from bokeh.plotting import figure, show
from bokeh.io import output_notebook

Call once to configure Bokeh to display plots inline in the notebook.
output_notebook()

N = 4000
x = np.random.random(size=N) * 100
y = np.random.random(size=N) * 100
radii = np.random.random(size=N) * 1.5

https://colab.research.google.com/notebooks/snippets/altair.ipynb
https://altair-viz.github.io/gallery/

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scrollTo=xNzEBRkzL3B0&printMode=true 9/9

Colab paid products - Cancel contracts here

colors = ["#%02x%02x%02x" % (r, g, 150) for r, g in zip(np.floor(50+2*x).astype(int), np.floor(30+2*y).astype(int))]

p = figure()
p.circle(x, y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None)
show(p)

https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription
https://bokeh.pydata.org/

For More Details

https://data-flair.training/blogs/python-libraries/

https://data-flair.training/blogs/python-libraries/

Thank You

