SCIENTIFIC COMPUTING WITH
PYTHON

Data Visualization

Course Coordinator: Dr. R. Mariyal Jebasty
Assistant Professor,
Department of Physics
Wavoo Wajeeha College of Arts & Science
Kayalpatnam.



Course Instructors

1. Mrs. Pushpa, Assistant Professor in Physics, Wavoo Wajeeha
Women'’s College of Arts & Science, Kayalpatnam.

2. Dr. S. Usharani, Assistant Professorin Physics, Wavoo
Wajeeha Women'’s College of Arts & Science, Kayalpatnam.




DATA
VISUALIZATION

USING PYTHON




About Matplotlib

* Matplotlib is the most popular python library for plotting different kinds of graphs.
* The Pyplot module inside the Matplotlib makes it work like Matlab.

line grapl h
040 11 18 .
035 1 16 -
g€ 030 { %
2 ; =
€ 025 1 ui
s 105 00
£ 020 1 2
8 08
015 11
06
010 11
04
005 4. I | | | =1 | 400

T T T T T T T 5 g 1
bar graph
- 10 L % °
.
w oo . . .
08 . .
~ o ., < .
] P
°
06{ . & 8 ° .
. ° . -
2
% * . .9 . =
. .
s 04 o ® . ® P
. . . °
. L] ° L] L Y
o® . “ ° e
0 02 ° . L[] ®,
L L]
. .
5 [ o ¢ P . ® o o
00 Ded .
o i i ‘ - . . - r -
2 ] M T » 00 02 04 06 08 10




Importing Matplotlib

* Toimport matplotlib.pyplot, type ‘import matplotlib.pyplot” in Jupyter Notebook a
run the cell.
 The common abbreviation used for matplotlib.pyplot is plt.

Fle  Edit  View Insert  Cell  Kemel  Widgets  Help Trusted ‘Pythnn& 0

B + A B 4% PRn B C W coke v B

In [1]: import matplotlib.pyplot as plt




Plotting Line Plots (1/2)

* We can plot line plots using matplotlib using the .plot() function.
* The first argument in the .plot() function specifies the x-axis.
* The second argument in the .plot() function specifies the y-axis.

In [3]: x axis = [1,2,3]
y axis = [4,5,6]
plt.plot(x axis, y axis)
Out[3]: [<matplotlib.lines.Line2D at 0x7f186e0faf70>]

6.00 1
575 1
5.50 1
5.25 1
5.00 1
475 1
450 4
425 1

4.00 1

100 125 150 175 200 225 250 275 300




Plotting Line Plots (2/2)

» Changing Color

- We can also change the color of the line by providing the color as third argument in the

» plot() function.

- Alist of the color abbreviations can be found at:
https://matplotlib.org/2.1.1/api/ as gen/matplotlib.pyplot.plot.html

In [4]: x axis
y_axis

= [1,2,3]
= [4,5,6]
plt.plot(x axis, y axis, 'r')

Out[4]: [<matplotlib.lines.Line2D at 0x7f186d85eb80>]

6.00 1
5.75 1
5.50 1
5.25 1
5.00 1
475 1
450 1
425 1

4.00 1

100 125 150 175 200 225 250 275 300



https://matplotlib.org/2.1.1/api/_as_gen/matplotlib.pyplot.plot.html

Title

* Toset the title of the plot, use the .title() function.

In [4]:

OQut[4]:

(1,2,3]
[4,5,6]

X_axis
y axis

plt.title('My First Graph')
plt.plot(x axis, y axis, 'r')

[<matplotlib.lines.Line2D at Ox7efef8336700>]

My First Graph

6.00 1
5.75 -
5.50 1
525 1
500 1
475 1
450 A
425 1

400 1

100 125 150 175 200 225 250 275 300




Labels

* Toassign labels to x and y-axis, use .xlabel() and .ylabel() respectively.

In [5]: x axis
y axis

(1,2,3]
[4,5,6]

plt.title('My First Graph')
plt.xlabel('x-axis')
plt.ylabel('y-axis"')
plt.plot(x axis, y axis, 'r')

Out[5]: [<matplotlib.lines.Line2D at Ox7efef82a4340>]

My First Graph

100 125 150 175 200 225 250 275 300
X-axis




Legend (1/2)

* We can plot multiple plots on the same chart simply by plotting them one by one as in
the given example.

In [10]: x1 axis = [2, 4, 6, 8]
yl axis = [1, 10, 100, 1600]
x2 axis = [1, 3,'5, 71
y2 axis = [100, 110, 120, 130]

plt.title('Two Plots on One Chart')
‘plt.xlabel('x-axis')
plt.ylabel('y-axis"')

plt.plot(xl axis, yl axis, 'r')
plt.plot(x2 axis, y2 axis, 'g')

Outl10]: [<matplotlib.lines.Line2D at @x7efef81c7850>]

Two Plots on One Chart
1000 -
800
600 -
v
3
400
200
< ——/
1 2 3 4 5 6 7 8




Legend (2/2)

* If plotting more than one plots, it is a good idea to add a legend in your figure using the
Jlegend() function.

In [12]: x1 axis = [2, 4, 6, 8]
yl axis = [1, 10, 160, 1060]
x2_axis = [1, 3, 5, 7]
y2_axis = [100, 110, 120, 130]

plt.plot(x]l axis, yl axis, 'r')
plt.plot(x2 axis, y2 axis, 'g')

plti.legend(['exponential’', 'linear'])

Out[12]: <matplotlib.legend.lLegend at Ox7efef81037c0>

1000 | — exponential
= linear
800
600
400 4
200 1
. __J/J




Plotting Histograms (1/3)

We can also plot histograms using .hist() function.
A histogram is generally used to plot frequency which helps identify distribution of
data.

In [20]: values = [10, 15, 20, 10, 15]
plt.hist(values)

Qut[20]: (array([2., ©., 6., 6., 0., 2., 0., 0., 0., 1.]),
array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.]),
<BarContainer object of 10 artists>)

200 4
175 4
150 +
125 4
100 A
0.75 4
0.50 4

0.25 1

0.00 -




Plotting Histograms (2/3)

Changing Color

* We can also change color of the bars using the ‘color’ parameter inside the hist()
function.

In [21]: values = [10, 15, 20, 1@, 15]
plt.hist(values, color="r")

Out[21]: (array([2., ., ©., 8., 0., 2., 0., 0., 8., 1.]),
array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.]),
<BarContainer object of 10 artists>)

200 1
175 1
150 1
125 1
100 1
0.75 1

0.50 1

0.25 1

0.00 -




Plotting Histograms (3/3)

Changing Width
* We can also change width of the bars using the ‘width’ parameter inside the hist(
function.

In [26]: values = [10, 15, 20, 10, 15]
plt.hist(values, color='r', width=0.5)

Out[26]: (array([2., 6., 6., 0., 0., 2., 8., 0., 0., 1.]),
array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.]),
<BarContainer object of 10 artists>)

200 1
175 -
150 1
125 A1
100 -
0.75 -

050 +

0.25 1

0.00 -




Plotting Bar Charts (1/2)

* To plot a bar graph, use the .bar() function of the matplotlib.pyplot.
* First argument in the bar() function is the x-label.

* Second argument in the bar() function is the height of each bar, which can be a

of values or a single value.

In [33]: values = [10, 15, 20]
plt.bar(values, [0.5, 1, 2])

Out[33]: <BarContainer object of 3 artists>

200 1
175 1
150 1
125 1
100 -

0.75 1

0.50 +
0.25 ]
0.00 -




Plotting Bar Charts (2/2)

Changing Width

* We can also change the width of bars in the bar plot using the ‘width’ parameter.

In [34]: values = [10, 15, 20]
plt.bar(values, [0.5, 1, 2], width=2)

Out[34]: <BarContainer object of 3 artists>

200 1
175 -
150 -
125 1
100 -
0.75 -

0.50 1

0.25 1

000 -




Plotting Pie Charts (1/4)

* .pie() function is used to create a pie chart in matplotlib.pyplot.

In [42]: values = [20, 20, 35, 25]
plt.pie(valdes)




Plotting Pie Charts (2/4)

Labels
* Toadd labels in your pie chart, use the ‘labels’ parameter which takes a list of labels.

In [43]: values = [20, 20, 35, 25]
plt.pie(values, labels=['a', 'b', 'c', 'd'])




Plotting Pie Charts (3/4)

Explode

* |If you want one or more wedges of your pie chart to stand out, you can use the
‘explode’ parameter.

* Provide a list containing distance of each wedge from the center to the ‘explode’
parameter.

In [44]: values = [20, 20, 35, 25]
plt.pie(values, labels=['a', 'b', ‘c', 'd'], explode=[0, 0.2, 0, 0])




Plotting Pie Charts (4/4)

Colors

* We can also change the colors of wedges by providing a list of colors to the ‘colors’
parameter.

In [45]: values = [20, 20, 35, 25]
plt.pie(values, labels=['a', 'b", 'c', 'd'], colors=['r', 'g', 'b", 'y'])




Plotting Scatter Plot (1/5)

* We can also plot scatter plots using the .scatter() function inside matplotlib.pyplot.
* |t takes two lists as arguments;

* First list specifies the values for the x-axis

* Second list specifies the values for the y-axis

In [48]: x_ axis
y axis

(1,2,3,4,5,6,7,8,9,10]
[15,12,54,49,87,75,52,14,23,1]

plt.title('Scatter Plot')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.scatter(x axis, y axis)
Out[48]: <matplotlib.collections.PathCollection at Ox7efefl670a00>

Scatter Plot

x axis




Plotting Scatter Plot (2/5)

Colors
* We can also change color of the dots using the ‘color’ parameter.

In [49]: x_axis
y axis

(1,2,3,4,5,6,7,8,9,10]
[15,12,54,49,87,75,52,14,23,1]

plt.title('Scatter Plot")
plt.xlabel('x axis')

plt.ylabel('y axis')
plt.scatter(x _axis, y axis, color='r')
Out[49]: <matplotlib.collections.PathCollection at 0x7efeflb2dd0o>
Scatter Plot
E3
w p
&
m R
&
2 B .
= 40
20 1 L J
= ° o
[V} °

INE
£
o
0
5

x axis




Plotting Scatter Plot (3/5)

Colormap

* |If you would like to give each dot a different color, you can provide a list of colors or
integers to the ‘c’ parameter.

In [52]: x_axis = [1,2,3,4,5,6,7,8,9,10]
'y _axis = [15,12,54,49,87,75,52,14,23,1]

plt.title('Scatter Plot')

plt.xlabel('x axis')
plt.ylabel('y axis')
plt.scatter(x axis, y axis, c¢=[1,2,3,4,5,6,7,8,9,10])
Out[52]: <matplotlib.collections.PathCollection at Ox7efefl9bf610>
Scatter Plot
o
m 4
L J
m R
2 o L4 -
> 40
<
20 P
L ] ° o
o R
2 4 6 8 10




Plotting Scatter Plot (4/5)

Colormap

* You can also set the colormap using the ‘cmap’ parameter.
* For this, you will need to provide a list of integers that will be mapped to colors.
* We have used ‘Accent’ colormap, which is one of the many built-in colormaps in

matplotlib.

In [53]: x axis
y_axis

(1,2,3,4,5,6,7,8,9,10]
[15,12,54,49,87,75,52,14,23,1]

plt.title('Scatter Plot')

plt.xlabel('x axis')

plt.ylabel('y axis')

plt.scatter(x_axis, y axis, ¢=[1,2,3,4,5,6,7,8,9,10], cmap='Accent')
Out[53]: <matplotlib.collections.PathCollection at 0x7efef188d190>

Scatter Plot




Colormap

Plotting Scatter Plot (5/5)

To see the available colormaps in matplotlib, import ‘em’” module from matplotlib.
Give the ‘dir(cm)’ command and run the cell.
A list of all the available colormaps will be displayed.

In [54]: from matplotlib import cm

In [55]: dir(cm)

builtins ',
cached ',

' doc_ ',
_ file ',
__loader__ ',
' name__ "',
' package ',
' spec_ ',

' cmap_registry',
' gen_cmap_registry',
' reverser',
'afmhot',

'afmhot _r',
‘autumn',
‘autumn_r‘,
'binary',

'binary r',
'bone’,

'hone r'




Handling Dates (1/2)

Sometimes, there are too many values on the x-axis and it becomes difficult to
distinguish them in the graph.
This also happens when you have dates on the x-axis and they overlap as shown in th
figure.

In [94]: dates = ['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05',
'2018-01-06', '2018-01-07', '2018-01-08', '2018-01-09', '2018-01-10']
values = [100, 101, 102, 103, 104, 105, 106, 107, 108, 109]

plt.plot(dates, values)
Out[94]: [<matplotlib.lines.Line2D at Ox7efefl3c0d60>]

108 1

106 1

104 -

102 1

100
2018-0200B-02002-02018-02008-02008-02006-0200 B-02008-02008-01-10




Handling Dates (2/2)

* We can avoid this by changing the orientation of the values on the x-axis using the
xticks() function.

« .xticks() has a rotation parameter which can be used to rotate the values on the x-

axis by a suitable angle.

In [96]: dates = ['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05°',
'2018-01-06', '2018-01-07', '2018-01-08', '2018-01-09', '2018-01-10']
values = [100, 161, 102, 103, 104, 105, 106, 107, 108, 109]

plt.xticks(rotation=90)
plt.plot(dates, values)

Out[96]: [<matplotlib.lines.Line2D at Ox7efef@daed430>]

108 -

106

104 -

102 A

100 A

2018-01-01
2018-01-02

2018-01-03
2018-01-04 4
2018-01-05
2018-01-06 -
2018-01-07 4
2018-01-08
2018-01-09

2018-01-10 4




Creating Multiple Subplots in One Figure

* We saw how we can plot multiple plots on the same chart, but sometimes we would
like to have different charts for each plot.
* What we want to have actually is multiple subplots in the same figure, as shown in th

given figure.
Subplot 1 Subplot 2

1000 - 130 -
= 125 -
120 -

mo R
115 -

400 -
110 -
20 105 1
0 100 -

2 a 6 8 2 4 6




Creating Multiple Subplots in One Figure

* To create subplots, we use the .subplot() function before plotting each graph.

* .subplot() takes 3 parameters;

* First parameter is the number of rows you want to have in your figure.
e Second parameter is the number of columns you want to have in your figure.
* Third parameter is the id/position of the plot in the figure.

In [101]: x1 axis = [2, 4, 6, 8]
yL axis = [1, 10, 100, 1000]
XLaxis = 1, 3, 5, 7]
y2 axis = (100, 116, 126, 130]

plt.subplot(1, 2, 1)
plt.plot(xl axis, y1 axis, 'r')

plt.subplot(1, 2, 2)
plt.plot(x2 axis, y2 axis, 'q')

plt. tight Layout ()

1000 1




Creating Multiple Subplots in One Figur

We can have separate x and y labels as well as title for each subplot in the figure.

In [103]:

XLaxis = [2, 4, 6, 8]

yLaxis = [1, 10, 100, 1009]

X2 axis = [1, 3, 5, 7]

y2 axis = [100, 116, 120, 130]

plt.subplot(1, 2, 1)
plt.title('Exponential')
plt.xlabel (' x-axis')
plt.ylabel('y-axis')
plt.plot(x1 axis, yl axis, 'r')

plt.subplot(1, 2, 2)
plt.title('Linear')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.plot(x2 axis, y2 axis, 'g')

plt. tight layout()

y-axis

1000 1

800 1

800 1

400 1

2001

Exponential




12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

~ Charting in Colaboratory

A common use for notebooks is data visualization using charts. Colaboratory makes this easy with several charting tools available as Python
imports.

~ Matplotlib

Matplotlib is the most common charting package, see its documentation for details, and its examples for inspiration.

~ Line Plots

import matplotlib.pyplot as plt

x =11, 2, 3, 4,5,6,7,8,9]
yl =11, 3, 5, 3, 1, 3, 5, 3, 1]
y2 = [2, 4, 6, 4, 2, 4, 6, 4, 2]
plt.plot(x, yl, label="line L")

plt.plot(x, y2, label="1line H")
plt.plot()

plt.xlabel("x axis")
plt.ylabel("y axis")
plt.title("Line Graph Example")
plt.legend()

plt.show()
Line Graph Example
6]
5
4
]
=
34
24
1
i 2 3 4 5 & 71 B 9
X axis
~ Bar Plots

import matplotlib.pyplot as plt

# Look at index 4 and 6, which demonstrate overlapping cases.
x1 =1[1, 3, 4, 5, 6, 7, 9]
yl =1[4,7,2, 4,7, 8, 3]

X2 = [2, 4, 6, 8, 10]
yz [5) 6) 2) 6) 2]

# Colors: https://matplotlib.org/api/colors_api.html

plt.bar(x1, yl1, label="Blue Bar", color='b")
plt.bar(x2, y2, label="Green Bar", color='g")
plt.plot()

plt.xlabel("bar number")
plt.ylabel("bar height")
plt.title("Bar Chart Example™)
plt.legend()

plt.show()

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true 1/9


http://matplotlib.org/
http://matplotlib.org/api/pyplot_api.html
http://matplotlib.org/gallery.html#statistics

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

Bar Chart Example

EN Flue Bar
BN Green Bar

7
=11 HEN

~ Histograms

ight
wn

a1 1 5 7 1 1 F &

import matplotlib.pyplot as plt
import numpy as np

# Use numpy to generate a bunch of random data in a bell curve around 5.
n = 5 + np.random.randn(1000)

m = [m for m in range(len(n))]
plt.bar(m, n)

plt.title("Raw Data")
plt.show()

plt.hist(n, bins=20)
plt.title("Histogram")
plt.show()

plt.hist(n, cumulative=True, bins=20)
plt.title("Cumulative Histogram")
plt.show()

Raw Data

[=]

200 400 G600 800 1000

Histogram

140

120 4

100 4

20 4

4 5 &

Cumulative Histogram

1000

600 4

400 A

200 A

~ Scatter Plots

import matplotlib.pyplot as plt

x1
yl

[2, 3, 4]
[5, 5, 5]

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true 2/9



12/15/22, 1:09 PM

x2 = [1, 2, 3, 4, 5]
y2 = [2, 3, 2, 3, 4]
y3 = [6, 8, 7, 8, 7]

# Markers: https://matplotlib.org/api/markers_api.html

plt.scatter(x1l, y1)
plt.scatter(x2, y2, marker='v', color="r")

plt.scatter(x2, y3, marker='"', color="m
plt.title('Scatter Plot Example')
plt.show()
Scatter Plot Example
B i i
7 " &
61 4
51 . . []
44 L
31 \J v
21 v v

T T
10 15 20 25 30 35 40 45 50

v Stack Plots

import matplotlib.pyplot as plt

idxes = [ 1, 2, 3, 4, 5, 6, 7, 8, 9]
arrl = [23, 40, 28, 43, 8, 44, 43, 18, 17]
arr2 = [17, 30, 22, 14, 17, 17, 29, 22, 30]
arr3 = [15, 31, 18, 22, 18, 19, 13, 32, 39]

# Adding legend for stack plots is tricky.
plt.plot([], [], color='r', label = 'D 1")
plt.plot([], [], color='g', label = 'D 2")
plt.plot([], [], color='b', label 'D 3'")

plt.stackplot(idxes, arri, arr2, arr3, colors= ['r', 'g',
plt.title('Stack Plot Example')

plt.legend()

plt.show()

Stack Plot Example

100 — D1

~ Pie Charts

import matplotlib.pyplot as plt

labels = 'S1', 'S2', 'S3'
[56, 66, 24]
<, gty

sections =
colors = ['

plt.pie(sections, labels=labels, colors=colors,
startangle=90,
explode = (0, 0.1, 0),
autopct = '%1.2f%%")

plt.axis('equal') # Try commenting this out.
plt.title('Pie Chart Example')
plt.show()

Charts in Colaboratory - Colaboratory

'b'1)

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true

3/9



12/15/22, 1:09 PM

Pie Chart Example

~ fill_between and alpha

import matplotlib.pyplot as plt

import numpy as np

ys = 200 + np.random.randn(100)
x = [x for x in range(len(ys))]

plt.plot(x, ys, '-")

s3

Charts in Colaboratory - Colaboratory

plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6)

plt.title("Fills and Alpha Example")

plt.show()

Fills and Alpha Example

202

201 A

200

199 4

198

197

196

195 1

~ Subplotting using Subplot2grid

import matplotlib.pyplot as plt

import numpy as np

def random_plots():
xs =[]
ys = [1]

for i in range(20):
x =1

y = np.random.randint(10)

xs.append(x)
ys.append(y)

return xs, ys

fig = plt.figure()

axl = plt.subplot2grid((5,
ax2 = plt.subplot2grid((5,
ax3 = plt.subplot2grid((5,
ax4 = plt.subplot2grid((5,

X, y = random_plots()
axl.plot(x, y)

X, y = random_plots()
ax2.plot(x, y)

X, y = random_plots()
ax3.plot(x, y)

X, y = random_plots()
ax4.plot(x, y)

2),
2),
2),
2),

(e,
(1,
(4,
(4,

9),
0))
e))
1))

rowspan=1,
rowspan=3,
rowspan=1,
rowspan=1,

colspan=2)
colspan=2)
colspan=1)
colspan=1)

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true

4/9



12/15/22,

1:09 PM

plt.tight_layout()
plt.show()

31/\—/\/\/\’—/\&/\‘

0.0 25 5.0 15 10.0 12.5 15.0 17.5
8]
6]
o
2]
o]
0.0 25 5.0 75 10.0 12.5 15.0 17.5
51 f\_/\/\\/\/\/\/\/ ‘ 51 \W— ‘
04 T T T 0 T T T
o 5 10 15 o 5 10 15
Plot styles

Colaboratory charts use Seaborn's custom styling by default. To customize styling further please see the matplotlib docs.

v 3D Graphs

~ 3D Scatter Plots

import matplotlib.pyplot as plt
import numpy as np

from

fig =

ax =

x1 =
yl =
z1 =

X2 =
y2 =
z2 =

mpl_toolkits.mplot3d import axes3d

plt.figure()
fig.add_subplot(111, projection = '3d")

[1, 2, 3, 4, 5,6, 7, 8,9, 10]
np.random.randint(10, size=10)
np.random.randint (10, size=10)

[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]
np.random.randint(-10, @, size=10)
np.random.randint(10, size=10)

ax.scatter(x1, y1, z1, c='b', marker='o', label="blue')
ax.scatter(x2, y2, z2, c='g', marker='D', label='green')

ax.set_xlabel('x axis")
ax.set_ylabel('y axis")
ax.set_zlabel('z axis')
plt.title("3D Scatter Plot Example")
plt.legend()

plt.tight_layout()

plt.

show()

3D Scatter Plot Example e blue
+ green

Z axis

0 35 _
Yaxis ©7 30 95000 -100

~ 3D Bar Plots

import matplotlib.pyplot as plt
import numpy as np

Charts in Colaboratory - Colaboratory

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true

5/9


https://seaborn.pydata.org/
https://matplotlib.org/users/style_sheets.html

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

fig = plt.figure()
ax = fig.add_subplot (111, projection = '3d")

x=1[1, 2, 3, 4, 5, 6, 7, 8, 9, 18]
y = np.random.randint(10, size=10)
z = np.zeros(10)

dx = np.ones(10)
dy = np.ones(10)
dz = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

ax.bar3d(x, y, z, dx, dy, dz, color='g")

ax.set_xlabel('x axis")
ax.set_ylabel('y axis")
ax.set_zlabel('z axis')
plt.title("3D Bar Chart Example")
plt.tight_layout()

plt.show()

3D Bar Chart Example

Z axis

v~ Wireframe Plots

import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111, projection = '3d")

X, Y, z = axes3d.get_test_data()
ax.plot_wireframe(x, y, z, rstride = 2, cstride = 2)
plt.title("Wireframe Plot Example")

plt.tight_layout()
plt.show()

Wireframe Plot Example

~ Seaborn

There are several libraries layered on top of Matplotlib that you can use in Colab. One that is worth highlighting is Seaborn:

import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

# Generate some random data

num_points = 20

# x will be 5, 6, 7... but also twiddled randomly

X = 5 + np.arange(num_points) + np.random.randn(num_points)

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true 6/9


http://seaborn.pydata.org/

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

# y will be 10, 11, 12... but twiddled even more randomly

y = 10 + np.arange(num_points) + 5 * np.random.randn(num_points)
sns.regplot(x, y)

plt.show()

35

a0 4

25 1

20 1

5 10 15 20 5

That's a simple scatterplot with a nice regression line fit to it, all with just one call to Seaborn's regplot.

Here's a Seaborn heatmap:

import matplotlib.pyplot as plt
import numpy as np

# Make a 10 x 10 heatmap of some random data

side_length = 10

# Start with a 10 x 10 matrix with values randomized around 5

data = 5 + np.random.randn(side_length, side_length)

# The next two lines make the values larger as we get closer to (9, 9)
data += np.arange(side_length)

data += np.reshape(np.arange(side_length), (side_length, 1))

# Generate the heatmap

sns.heatmap(data)

plt.show()

~ Altair

Altair is a declarative visualization library for creating interactive visualizations in Python, and is installed and enabled in Colab by default.

For example, here is an interactive scatter plot:

import altair as alt
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
x="Horsepower"',
y="'Miles_per_Gallon',
color="0Origin"',

).interactive()

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true 719


http://seaborn.pydata.org/generated/seaborn.regplot.html#seaborn.regplot
https://seaborn.pydata.org/generated/seaborn.heatmap.html
http://altair-viz.github.io/

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory

50 Origin
() Eurape
48 ED Japan
40+ ° UsA
i
7 g8
£ o o
1 ~ 0.2 &
For more examples of Altair plots, see the Altair snippets notebook or the external Altair Example Gallery.
| TEROW 28 %oH
~ Plotly
5
v Sample

from plotly.offline import iplot
import plotly.graph_objs as go

data = [
go.Contour(
z=[[10, 10.625, 12.5, 15.625, 28],
[5.625, 6.25, 8.125, 11.25, 15.625],
[2.5, 3.125, 5., 8.125, 12.5],
[6.625, 1.25, 3.125, 6.25, 10.625],
[0, ©.625, 2.5, 5.625, 10]]

]
iplot(data)

~ Bokeh

~ Sample

import numpy as np
from bokeh.plotting import figure, show
from bokeh.io import output_notebook

# Call once to configure Bokeh to display plots inline in the notebook.
output_notebook()

N = 4000

X = np.random.random(size=N) * 100

y = np.random.random(size=N) * 100
radii = np.random.random(size=N) * 1.5

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true 8/9


https://colab.research.google.com/notebooks/snippets/altair.ipynb
https://altair-viz.github.io/gallery/

12/15/22, 1:09 PM Charts in Colaboratory - Colaboratory
colors = ["#%02x%02x%02x" % (r, g, 150) for r, g in zip(np.floor(50+2*x).astype(int), np.floor(30+2*y).astype(int))]
p = figure()

p.circle(x, y, radius=radii, fill_color=colors, fill_alpha=0.6, line_color=None)
show(p)

Colab paid products - Cancel contracts here

https://colab.research.google.com/notebooks/charts.ipynb#scroll To=xNzEBRkzL3B0&printMode=true 9/9


https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links
https://colab.research.google.com/cancel-subscription
https://bokeh.pydata.org/

For More Details

https://data-flair.training/blogs/python-libraries/



https://data-flair.training/blogs/python-libraries/

Thank You



